Investigation into the effect of Y, Yb doping in $Ba_2In_2O_5$: determination of the solid solution range and co-doping with phosphate

J.F. Shin, P.R. Slater*

School of Chemistry, University of Birmingham, Birmingham. B15 2TT. UK

*Correspondence to

Prof. P.R. Slater School of Chemistry University of Birmingham Birmingham B15 2TT UK

p.r.slater@bham.ac.uk

This paper is copyright P.R. Slater and J.F. Shin

Abstract

In this paper we examine the effect of Y, Yb doping in Ba₂In₂O₅, examining the solid

solution range and effect on the conductivity and CO2 stability. The results showed that

up to 35% Y, Yb can be introduced, and this doping leads to an introduction of disorder

on the oxygen sublattice, and a corresponding increase in conductivity. Further increases

in Y, Yb content could be achieved through co-doping with phosphate. While this co-

doping strategy led to a reduction in the conductivity, it did have a beneficial effect on

the CO2 stability, and further improvements in the CO2 stability could be achieved

through La and P co-doping.

Keywords: Perovskite, proton conductor, phosphate, indate, yttrium, ytterbium

2

Introduction

Oxide ion/Proton conducting ceramics have been attracting significant interest due to potential technological applications in fuel cells, separation membranes and sensors [1-3]. One system that has attracted considerable interest is Ba₂In₂O₅ [4-20], which adopts the brownmillerite structure, in which the oxide ion vacancies are ordered leading to alternating layers of octahedral and tetrahedral In. As a result of this vacancy ordering, the oxide ion conductivity is comparatively low, but at higher temperatures a step-wise increase in conductivity is observed due to the resultant disorder introduced during the transition from an orthorhombic to tetragonal unit cell. As a result of this observed high oxide ion conductivity in the high temperature structure of Ba₂In₂O₅, there have been many doping strategies investigated to stabilize the disordered structure to lower temperature. In this respect, doping with higher valent cations (e.g. Zr, Ce, Ti) with similar size have proved very effective. Such studies have also shown that the conductivity at low temperatures can be further enhanced in wet atmospheres, due to water incorporation into the oxide ion vacancies and a resultant protonic contribution to the conductivity, and particular recent interest in this respect for fuel cell applications has been in terms of Ti doped Ba₂In₂O₅ [21]. Our own recent studies have demonstrated that oxyanion (MO₄ⁿ-; M= S, P, Si) doping is similarly successful. In such a doping strategy, the P, S, Si of the oxyanion group resides on the perovskite B cation site, with the oxide ions of this group filling 4 or the available 6 oxide ion positions around this site. In addition to enhancing the oxide ion conductivity in this and related phases through the introduction of disorder, such oxyanion doping has been shown to enhance the stability towards CO₂ (poor CO₂ stability is a key issue for applications of many potential proton

conducting electrolytes) [22-26]. However, issues with Ba₂In₂O₅ electrolyte materials for technological applications are the high cost of In, as well as its tendency for In³⁺ to reduce at high temperatures under reducing conditions, and so we have been investigating strategies to reduce the In content. In this respect we have examined Y, Yb doping in Ba₂In₂O₅. Previous studies have shown Y substitution up to 35% in Ba₂In₂O₅ and a similar solubility limit of Yb into the related Ba_{0.6}Sr_{0.4}LaIn₂O_{5.5} [19, 20]. In this work, we expand such studies to investigate the CO₂ stability of such systems, as well as the possible incorporation of higher levels of Y, Yb through co-doping with phosphate.

Experimental

High purity BaCO₃, In₂O₃, La₂O₃, Y₂O₃, Yb₂O₃, and NH₄H₂PO₄ were used to prepare Ba_{2-z}La_zIn_{2-x-y}M_yP_xO_{5+x+z/2} (M=Y, Yb) samples. A small (3%) excess of BaCO₃ was employed, in order to overcome Ba loss at elevated temperatures, and eliminate Ba deficient impurity phases, such as BaIn₂O₄, as has been seen in other studies synthesising similar Ba containing phases [22,23]. The powders were intimately ground and heated initially to 1000°C for 12 hours. They were then ball-milled (350 rpm for 1 hour, Fritsch Pulverisette 7 Planetary Mill) and reheated to 1000°C for 50 hours. The resulting powders were then ball-milled (350 rpm for 1 hour, Fritsch Pulverisette 7 Planetary Mill) a second time and pressed as pellets (1.3 cm diameter) and sintered at 1400°C for 10 hours. The pellets were covered in sample powder and the crucible was covered with a lid to limit the amount of Ba loss during the sintering process. Powder X-ray diffraction (Bruker D8 diffractometer with Cu Kα₁ radiation) was used to demonstrate phase purity

as well as for preliminary structure determination. For the latter, the GSAS suite of programs was used [27].

The CO_2 stability of samples was determined using thermogravimetric analysis (Netzsch STA 449 F1 Jupiter Thermal Analyser). Samples were heated at 10 °C min⁻¹ to 1000 °C in 1:1 CO_2 and N_2 mixture to determine at what temperature CO_2 pick up occurred. In addition further stability studies were performed by heating samples at 600° C for 12 hours in a tube furnace under flowing CO_2 gas.

Raman spectroscopy measurements were made in order to provide further evidence for the successful incorporation of phosphate. These measurements utilised a Renishaw inVia Raman microscope with excitation using a Cobolt Samba CW 532 nm DPSS Laser. The water contents of hydrated samples were determined from thermogravimetric analysis (Netzsch STA 449 F1 Jupiter Thermal Analyser). Samples were heated at 10°C min⁻¹ to 1000°C in N₂, and the water content was determined from the observed mass loss.

For the conductivity measurements, the sintered pellets were coated with Pt paste, and then heated to 800° C for 1 hour to ensure bonding to the pellet. Conductivities were then measured by AC impedance measurements (Hewlett Packard 4192A impedance analyser) in the range from 0.1 to 10^3 kHz, with an applied voltage of 100 mV. Measurements were made in dry N_2 and wet N_2 (in which the gas was bubbled at room temperature through water) to identify any protonic contribution to the conductivity. The impedance data showed a single broad semicircle in both dry and wet atmospheres (figure 1). The capacitance of the semicircle ($\approx 10^{-12}$ F cm⁻¹) was typical of a bulk response, suggesting that the resistance of the grain boundary was small compared to that of the bulk.

Results and discussion

In the first instance, the solid solution range for Y, Yb doped Ba₂In₂O₅ was examined. The results showed that single phase samples of Ba₂In_{2-v}M_vO₅ (M=Y, Yb) could be prepared for $0 \le y \le 0.7$, with impurities (e.g. $Ba_3(Y/Yb)_4O_9$) being observed for higher levels of Y, Yb. The observed solid solution ranges for Y, Yb in the Ba₂In₂O₅ structure are similar to the range previously reported by Noirault et al. for Y doping in this system, and for Yb doping by Kakinuma et al. in the related Ba_{0.6}Sr_{0.4}LaIn₂O_{5.5} [19, 20]. The results show a reduction in the orthorhombic splitting on Y, Yb incorporation, and a transition towards cubic symmetry for the highest Y, Yb levels, suggesting the introduction of disorder on the oxygen sublattice through Y, Yb doping (figure 2, table 1). The cell parameters showed an increase (comparing equivalent cells) on Y/Yb introduction, which is consistent with the larger size of Y³⁺/Yb³⁺ compared to In³⁺. In agreement with the above conclusions regarding the introduction of oxygen disorder, an increase in conductivity in dry N₂ is observed on increasing Y/Yb content (figure 3, table 2), with a further increase due to a protonic contribution on changing to wet N2, in line with prior reports [19]. The effect of Y, Yb doping on the CO₂ stability was then examined. Undoped Ba₂In₂O₅ shows comparatively poor CO₂ stability, with TGA studies showing a mass increase above 600°C on heating in a 1:1 CO₂ and N₂ gas mixture. The Y, Yb doped samples showed similar low stability (figure 4). In these cases the temperature at which the first mass increases was observed was slightly lower, at 550°C, for both Ba₂In_{1.3}Y_{0.7}O₅ and Ba₂In_{1.3}Yb_{0.7}O₅, although the overall mass increases were slightly lower (figure 4). In agreement with the TGA results, samples heated under CO₂ in a tube

furnace at 600°C showed the presence of significant amounts of BaCO₃ impurity, with the highest levels of BaCO₃ observed for undoped Ba₂In₂O₅ (figure 5).

In order to determine the level of water incorporation in these samples, they were heated under wet N₂ to 800°C, before slow cooling (0.4 °C min⁻¹) to room temperature. The water content of these samples were then determined by thermogravimetric analysis, which indicated values of 1 H₂O per formula unit, consistent with complete filling of the oxide ion vacancies.

In order to try to increase the maximum Y/Yb content, as well as improve the CO₂ stability, co-doping with phosphate was attempted. The results showed that quite high levels of phosphate were required to increase the Y/Yb content further, with it proving to be possible to prepare single phase samples with composition Ba₂In_{0.5}(Y/Yb)P_{0.5}O_{5.5} (figure 6, table 3). Raman spectroscopy measurements for these phosphate doped samples are shown in figure 7. The results confirm the presence of phosphate, as exemplified by the appearance of a peak at 940 cm⁻¹. While the previous studies for Y, Yb doped Ba₂In₂O₅ showed a small decrease in the onset temperature of CO₂ pick-up, the addition of phosphate, despite the higher Y, Yb contents, led to a small increase in this temperature, with the Ba₂In_{0.5}YbP_{0.5}O_{5.5} sample only showing a main mass increase above 700°C (figures 8 and 9). This improved CO2 stability on phosphate doping is in agreement with prior results on phosphate doped Ba₂In₂O₅, which was attributed to a reduction in the basicity of the system on introducing phosphate. While the co-doping with phosphate was beneficial in terms of the CO₂ stability, the conductivity was lowered (table 4, figure 9), which is most likely due to the reduction in the oxide ion vacancy content, and the fact that the vacancies present are essentially trapped around the phosphorus, due to its preference to incorporate as a tetrahedral PO_4^{3-} ion.

In order to try to improve the CO₂ stability further, and increase the conductivity, additional co-doping studies were performed. These experiments were directed by prior studies on Ba₂In₂O₅ which showed that co-doping with La and phosphate improved the CO₂ stability [25]. In agreement with these prior studies, the results here showed that co-doping Ba₂In_{2-y}(Y/Yb)_yO₅ with La and phosphate gave rise to a further improvement in the CO₂ stability. To accommodate the La, the phosphate content was required to be lowered, with X-ray diffraction studies showing samples of composition Ba_{1.7}La_{0.3}In₁(Y/Yb)_{0.7}P_{0.3}O_{5.45} to be single phase. These samples showed good CO₂ stability, with TGA showing a mass increase on heating in a 1:1 CO₂ and N₂ gas mixture only at temperatures above 900°C (figure 8). However, while the CO₂ stability was improved, the conductivity was significantly lower than for both samples with and without phosphate (figure 10).

Conclusions

The results show that it is possible to introduce up to 35% Y, Yb into Ba₂In₂O₅ leading to an improvement in the low temperature conductivity as a result of the introduction of disorder on the oxygen sublattice. Further increases in Y, Yb content are possible through co-doping with phosphate. This co-doping strategy led to a small improvement in the CO₂ stability, albeit at the detriment of the conductivity. Further improvements in the CO₂ stability could be achieved through co-doping on the Ba site with La. However, the

improvement in the CO₂ stability was shown to be at the detriment of the conductivity, indicating the problems with obtaining both high conductivity and CO₂ stability.

Acknowledgements

We would like to express thanks to EPSRC (grant EP/I003932/1) and the University of Birmingham for funding (EPS international PhD scholarship for JFS). The Bruker D8 diffractometer, Renishaw inVia Raman microscope, and Netzsch STA 449 F1 Jupiter Thermal Analyser used in this research were obtained through the Science City Advanced Materials project: Creating and Characterising Next generation Advanced Materials project, with support from Advantage West Midlands (AWM) and part funded by the European Regional Development Fund (ERDF).

References

- [1].K. D. Kreuer, Annu. Rev. Mater. Res. 33 (2003) 333.
- [2]. T. Norby, Solid State Ionics, 125 (1999) 1
- [3]. A. Orera, P.R. Slater; Chem. Mater. 22 (2010) 675.
- [4].J.B. Goodenough, J.E. Ruizdiaz, Y.S. Zhen, Solid State Ionics 44 (1990) 21.
- [5].S.A. Speakman, J.W. Richardson, B.J. Mitchell, S.T. Misture, Solid State Ionics 149 (2002) 247.
- [6]. T. Schober, Solid State Ionics 109 (1998) 1.
- [7]. V. Jayaraman, A. Magrez, M. Caldes, O. Joubert, M. Ganne, Y. Piffard, L. Brohan, Solid State Ionics 170 (2004) 17.

- [8].A. Rolle, R.N. Vannier, N.V. Giridharan, F. Abraham, Solid State Ionics 176 (2005) 2095.
- [9]. T. Schrober, J. Friedrich, Solid State Ionics 113 (1998) 369.
- [10]. G.B. Zhang, D.M. Smith, Solid State Ionics 82 (1995) 153.
- [11]. E. Quarez, S. Noirault, M.T. Caldes, O. Joubert, J. Power Sources 195 (2010)1136.
- [12]. M. Karlsson, A. Matic, C.S. Knee, I. Ahmed, S.G. Eriksson, L. Borjesson, Chem. Mater. 20 (2008) 3480.
- [13]. F. Giannici, A. Longo, A. Balerna, K.D. Kreuer, A. Martorana, Chem. Mater. 19 (2010) 5714.
- [14]. S. Noirault, S. Celerier, O. Joubert, M.T. Caldes, Y. Piffard, Solid State Ionics 178 (2007) 1353.
- [15]. I. Ahmed, S.G. Eriksson, E. Ahlberg, C.S. Knee, P. Berastegui, L.G. Johansson, H. Rundlof, M. Karlsson, A. Matic, L. Borjesson, D. Engberg, Solid State Ionics 177 (2006) 1395.
- [16]. K. Kakinuma, A. Tomita, H. Yamamura, T. Atake, J. Mater. Sci. 41 (2006) 6435.
- [17]. C.A.J. Fisher, M.S. Islam, Solid State Ionics 118 (1999) 355.
- [18]. A. Jarry, E. Quarez, K. Kravchyk, O. Joubert; Solid State Ionics 216 (2012) 11.
- [19]. S. Noirault, E. Quarez, Y. Piffard, O. Joubert; Solid State Ionics 180 (2009) 1157.
- [20]. K. Kakinuma, T. Waki, H. Yamamura, T. Atake; J. Ceram Soc Jpn 117 (2009) 1364.
- [21]. M. Letilly, O. Joubert and A. L. La Salle, Journal of Power Sources 206 (2012) 210.

- [22]. J. F. Shin, L. Hussey, A. Orera, P. R. Slater; Chem Commun. 46 (2010) 4613.
- [23]. J.F. Shin, D.C. Apperley, P.R. Slater; Chem. Mater. 22 (2010) 5945.
- [24]. J.F. Shin, A. Orera, D.C. Apperley, P.R. Slater; J. Mater. Chem. 21 (2011) 874.
- [25]. J.F. Shin, P.R. Slater; J. Power Sources 196 (2011) 8539.
- [26]. J.F. Shin, K. Joubel, D.C. Apperley, P.R. Slater; *Dalton Trans*, 2012, 41, 261.
- [27]. A.C. Larson, R.B. Von Dreele. *Los Alamos National Laboratory, Report*. No LA-UR-86-748 (1987).

Table 1. Cell parameter data for $Ba_2In_{2\text{-}x}Y/Yb_xO_5$

Sample	Unit cell paramet	ers (Å)	Unit cell	
(nominal composition)	a	b	с	volume (Å ³)
Ba ₂ In ₂ O ₅	6.089(2)	16.736(8)	5.963(2)	607.6(2)
$Ba_{2}In_{1.6}Y_{0.4}O_{5}$	6.025(3)	17.135(9)	6.040(2)	623.5(3)
$Ba_{2}In_{1.3}Y_{0.7}O_{5}$	4.280(1)	-	-	78.38(4)
$Ba_2In_{1.6}Yb_{0.4}O_5$	6.118(2)	16.817(9)	6.005(3)	617.8(4)
$Ba_{2}In_{1.3}Yb_{0.7}O_{5}$	4.264(1)	-	-	77.53(4)

Table 2. Conductivity data for $Ba_2In_{2-x}Y/Yb_xO_5$

Sample	Conductivity (S cm ⁻¹)			
(nominal	500	800 °C		
composition)	Wet	Dry		
Ba ₂ In ₂ O ₅	3.2 x 10 ⁻⁵	6.5 x 10 ⁻⁶	1.1 x 10 ⁻³	
$Ba_2In_{1.6}Y_{0.4}O_5$	1.8 x 10 ⁻⁴	4.0×10^{-5}	1.7×10^{-3}	
$Ba_2In_{1.3}Y_{0.7}O_5$	2.6×10^{-3}	6.7 x 10 ⁻⁴	9.5×10^{-3}	
$Ba_{2}In_{1.6}Yb_{0.4}O_{5}$	1.7 x 10 ⁻⁴	3.9×10^{-5}	1.4×10^{-3}	
$Ba_2In_{1.3}Yb_{0.7}O_5$	4.6×10^{-4}	3.4×10^{-4}	8.1×10^{-3}	

Table 3. Cell parameter data for La and/or P co-doped $Ba_2In_{2\text{-}x}Y/Yb_xO_5$

Sample	Unit cell parameters (Å)			Unit cell
(nominal composition)	a	b	c	volume (Å ³)
Ba ₂ In ₂ O ₅	6.089(2)	16.736(8)	5.963(2)	607.6(2)
$Ba_{2}In_{0.5}Y_{1}P_{0.5}O_{5.5}$	4.269(1)	-	-	77.78(4)
$Ba_{2}In_{0.5}Yb_{1}P_{0.5}O_{5.5}$	4.244(1)	-	-	76.43(4)
$Ba_{1.7}La_{0.3}In_{1}Y_{0.7}P_{0.3}O_{5.45}$	4.241(1)	-	-	76.25(4)
$Ba_{1.7}La_{0.3}In_{1}Yb_{0.7}P_{0.3}O_{5.45}$	4.221(1)	-	-	75.23(4)

Table 4. Conductivity data for La and/or P co-doped $Ba_2In_{2\text{-}x}Y/Yb_xO_5$

Sample	Conductivity (S cm ⁻¹)			
(nominal composition)	500 °C		800 °C	
	Wet	Dry		
Ba ₂ In ₂ O ₅	3.2 x 10 ⁻⁵	6.5 x 10 ⁻⁶	1.1 x 10 ⁻³	
$Ba_2In_{0.5}Y_1P_{0.5}O_{5.5}$	4.5 x 10 ⁻⁴	1.7 x 10 ⁻⁴	4.4×10^{-4}	
$Ba_2In_{0.5}Yb_1P_{0.5}O_{5.5}$	6.6 x 10 ⁻⁴	2.0×10^{-4}	6.1 x 10 ⁻⁴	
$Ba_{1.7}La_{0.3}In_1Y_{0.7}P_{0.3}O_{5.45}$	3.3×10^{-4}	9.8×10^{-5}	1.5×10^{-3}	
$Ba_{1.7}La_{0.3}In_{1}Yb_{0.7}P_{0.3}O_{5.45}$	2.7 x 10 ⁻⁴	8.3 x 10 ⁻⁵	1.3×10^{-3}	

Figure Captions

Fig. 1. Impedance spectra for $Ba_2In_{1.3}Yb_{0.7}O_5$ at 260 °C: dry N_2 (square) and wet N_2 (cross).

Fig. 2. XRD patterns for (a) $Ba_2In_2O_5$, (b) $Ba_2In_{1.6}Y_{0.4}O_5$, (c) $Ba_2In_{1.3}Y_{0.7}O_5$, (d) $Ba_2In_{1.6}Yb_{0.4}O_5$ and (e) $Ba_2In_{1.3}Yb_{0.7}O_5$.

Fig. 3. Conductivity data in dry N_2 for $Ba_2In_2O_5$ (open circle), $Ba_2In_{1.6}Y_{0.4}O_5$ (open triangle), $Ba_2In_{1.3}Y_{0.7}O_5$ (open diamond), $Ba_2In_{1.6}Yb_{0.4}O_5$ (open square), $Ba_2In_{1.3}Yb_{0.7}O_5$ (open cross). Conductivity data in wet N_2 for $Ba_2In_{1.3}Y_{0.7}O_5$ (filled diamond) is also shown.

Fig. 4. TG profiles (10 °C min⁻¹ to 1000 °C in 1:1 CO₂ and N₂ mixture) for Ba₂In₂O₅ (circle), Ba₂In_{1.3}Y_{0.7}O₅ (triangle) and Ba₂In_{1.3}Yb_{0.7}O₅ (square).

Fig. 5. XRD patterns for (a) Ba₂In₂O₅, (b) Ba₂In_{1.3}Y_{0.7}O₅ and(c) Ba₂In_{1.3}Yb_{0.7}O₅ after heating in CO₂ at 600 °C for 12h.

Fig. 6. XRD patterns for (a) $Ba_2In_{0.5}Y_1P_{0.5}O_{5.5}$, (b) $Ba_2In_{0.5}Yb_1P_{0.5}O_{5.5}$, (c)

 $Ba_{1.7}La_{0.3}In_1Y_{0.7}P_{0.3}O_{5.45}$ and (d) $Ba_{1.7}La_{0.3}In_1Yb_{0.7}P_{0.3}O_{5.45}$.

Fig. 7. Raman spectra of (a) $Ba_2Yb_{1.5}P_{0.5}O_{5.5}$ (b) $Ba_2In_{0.5}Yb_1P_{0.5}O_{5.5}$ (c)

 $Ba_{1.7}La_{0.3}In_{1}Yb_{0.7}P_{0.3}O_{5.45} \ and \ (d) \ Ba_{3}(PO_{4})_{2}$

Fig. 8. TG profiles (10 °C min⁻¹ to 1000 °C in 1:1 CO₂ and N₂ mixture) for

Ba₂In_{0.5}Y₁P_{0.5}O_{5.5} (open triangle), Ba₂In_{0.5}Yb₁P_{0.5}O_{5.5} (open square),

 $Ba_{1.7}La_{0.3}In_{1}Y_{0.7}P_{0.3}O_{5.45} \ (closed \ triangle) \ and \ Ba_{1.7}La_{0.3}In_{1}Yb_{0.7}P_{0.3}O_{5.45} \ (closed \ square).$

Fig. 9. XRD patterns for (a) $Ba_2In_{0.5}Y_1P_{0.5}O_{5.5}$, (b) $Ba_2In_{0.5}Yb_1P_{0.5}O_{5.5}$ (c)

 $Ba_{1.7}La_{0.3}In_{1}Y_{0.7}P_{0.3}O_{5.45} \text{ and (d) } Ba_{1.7}La_{0.3}In_{1}Yb_{0.7}P_{0.3}O_{5.45} \text{ after heating in CO}_{2} \text{ at 600 °C}$

for 12h, showing no evidence for BaCO₃ formation unlike for samples without P doping (see figure 4).

Fig. 10. Conductivity data in dry N₂ for Ba₂In_{0.5}Y₁P_{0.5}O_{5.5} (open square),

 $Ba_2In_{0.5}Yb_1P_{0.5}O_{5.5}$ (open diamond), $Ba_{1.7}La_{0.3}In_1Y_{0.7}P_{0.3}O_{5.45}$ (open triangle) and

 $Ba_{1.7}La_{0.3}In_1Yb_{0.7}P_{0.3}O_{5.45}$ (open circle). Conductivity data in wet N_2 for

 $Ba_2In_{0.5}Y_1P_{0.5}O_{5.5} \ (filled\ square)\ and\ Ba_{1.7}La_{0.3}In_1Y_{0.7}P_{0.3}O_{5.45} \ (filled\ triangle)\ are\ also\ shown.$

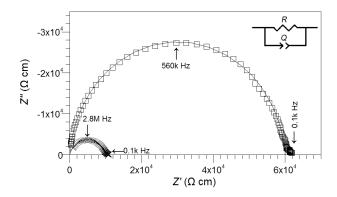


Fig. 1

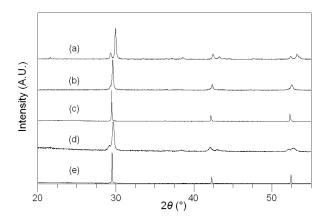


Fig 2.

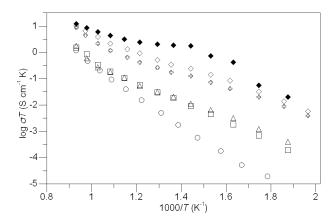


Fig. 3

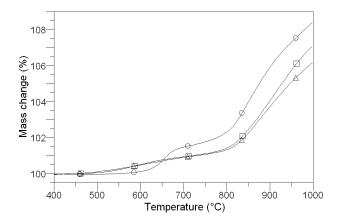


Fig. 4

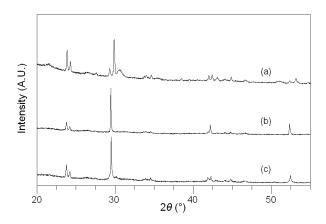


Fig. 5

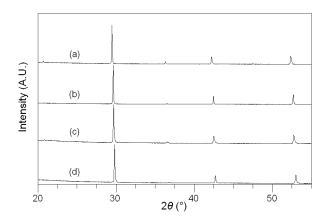


Fig. 6

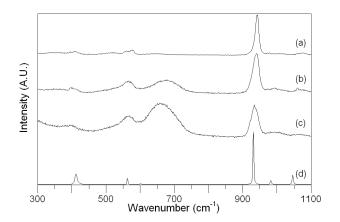


Fig. 7.

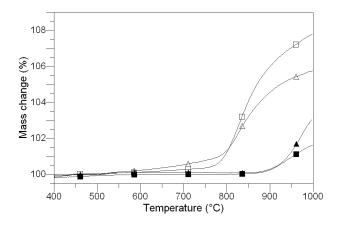


Fig. 8.



Fig 9.

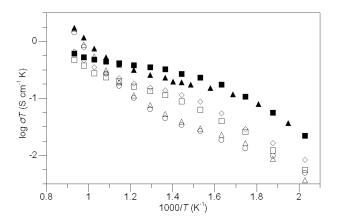


Fig. 10