ePapers Repository

Supplementary data for The Structures and Magnetic Properties of FexCo1 xSb2O4 and MnxCo1 xSb2O4, 0 ≤ x ≤ 1

Cumby, James and de Laune, Ben and Greaves, Colin (2015) Supplementary data for The Structures and Magnetic Properties of FexCo1 xSb2O4 and MnxCo1 xSb2O4, 0 ≤ x ≤ 1. [Dataset] (In Press)

Research Datasets have been moved to the eData Repository.

This item is at https://edata.bham.ac.uk/54/

Please update any links or bookmarks.


MnxCo1-xSb2O4 and FexCo1-xSb2O4 have been synthesised for 0 ≤ x ≤ 1 and their structures and magnetic properties examined. For all compounds, neutron powder diffraction (NPD) data reveal a canted AFM structure that changes gradually from C-type (x = 0) to A-type (x = 1). This transition corresponds to a gradual rotation of the moments through 90o, from ±[001] to ± [100]. It is primarily caused by a change in the relative magnitudes of the three types of magnetic exchange that exist between cations. Within a given chain, direct exchange promotes an antiferromagnetic ground state for the two cations and 90o superexchange that favours ferromagnetic order. Between chains, antiferromagnetic order is preferred. However, the observed magnetic moments (from NPD) are significantly lower than expected except for the end-members of the series; this suggests that incomplete magnetic order is present. Magnetic susceptibility data also suggest complex magnetic behaviour except for the end-member compounds. The complex magnetic features appear to originate from composition inhomogeneity, local magnetic order in the chains of octahedra being dependent on small clusters of the same transition metal ion and the delicate energy balance that clearly exists between the two ordered configurations in the mid-composition region where x is near to 0.5.

Type of Work:Dataset
School/Faculty:Colleges (2008 onwards) > College of Engineering & Physical Sciences
Department:School of Chemistry
Date:November 2015
Subjects:Q Science > QD Chemistry
Editors:Greaves, Colin
Related URLs:
Funders:Engineering and Physical Sciences Research Council (EPSRC)
ID Code:2082

Export Reference As : ASCII + BibTeX + Dublin Core + EndNote + HTML + METS + MODS + OpenURL Object + Reference Manager + Refer + RefWorks
Share this item :
QR Code for this page

Repository Staff Only: item control page