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Abstract

Observed macroeconomic forecasts display gradual recognition of the long-run growth

of endogenous variables (e.g. output, output per hour) and a positive correlation be-

tween long-run growth expectations and cyclical activities. Existing business cycle

models appear inconsistent with the evidence. This paper presents a model of busi-

ness cycle in which households have imperfect knowledge of the long-run growth of

endogenous variables and continually learn about this growth. The model features

comovement and mutual influence of households’growth expectations and market out-

comes, which can replicate the evidence, and suggests a critical role for shifting long-run

growth expectations in business cycle fluctuations.
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1 Introduction

Economic agents and policymakers face uncertainty about the (unobserved) long-run growth

rate of endogenous variables (e.g., income, aggregate output, asset prices). This perceived

long-run growth determines consumption and financial investment decisions as well as the for-

mulation of monetary and fiscal policy by policymakers. Observed macroeconomic forecasts—

documented in Section 2.1—display gradual learning of and systematic forecast errors for the

long-run growth of endogenous variables by agents. More importantly, Section 2.2 demon-

strates, for the first time to our knowledge, a positive correlation between long-run output

(or output per hour) growth expectations and cyclical macroeconomic activities.

Perhaps surprisingly, existing business cycle models — including full and imperfect in-

formation Rational Expectations (RE) models and adaptive learning (AL) models —do not

consider this long-run growth uncertainty. These models, as explained later, appear incon-

sistent with the evidence mentioned above. The paper develops a real business cycle (RBC)

model where agents have imperfect knowledge of the long-run growth rate of endogenous

variables and continually learn about this growth. The model can replicate this evidence

and suggests an important role for shifting long-run growth expectations in business cycle

fluctuations.

Clearly, agents in full-information RE models have exact knowledge of the long-run

growth. A separate class of models entertain weaker informational assumptions where agents

are uncertain and learn about the exogenous (productivity) process, eg. Edge, Laubach and

Williams (2007) and Boz, Daude, and Durdu (2011). However, in this type of learning mod-

els, agents do not make systematic forecast errors about endogenous variables (including

their long-run growth) as a consequence of RE. This contradicts the evidence and suggests a

separate role for learning of endogenous variables. Moreover, these models produce constant

long-run growth forecasts which do not correlate with cyclical activities.1

1An exception is the case when trend productivity growth contains a unit root, this correlation is then
counterfactually negative; see Section 6.2.
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A large class of models replace RE by AL analyzing macroeconomic policy implications

and their empirical performance, such as Bullard and Mitra (2002), Evans and Honkapohja

(2003) and Eusepi and Preston (2011). These AL models, however, assume that agents learn

about detrended endogenous variables. We show that this widely adopted methodology in

the AL literature effectively assumes that agents have exact knowledge about the long-run

growth of endogenous variables (as under RE). Again, in this type of models, the long-

run growth forecasts are constant and the correlation between long-run growth forecasts and

cyclical activities is zero by construction, which is inconsistent with the evidence on long-run

forecasts.

Our model differs from existing models by relaxing households’knowledge of the long-run

growth of endogenous variables. Agents do not have suffi cient information to derive the equi-

librium mapping from primitives (e.g. preferences, technology) to the long-run growth rate

of endogenous variables; instead they approximate the equilibrium mapping by extrapolating

historical patterns in observed data. Their subjective beliefs may not be the same as the

true equilibrium distribution. They forecast variables that are exogenous to their decision

problems and make optimal economic decisions under their subjective beliefs, in line with

Preston (2005, 2006), Eusepi and Preston (2011) and Adam and Marcet (2011).

Consistent with observed forecasts, learning about the long-run growth of endogenous

variables gives rise to strongly positive autocorrelation of the forecast errors in long-run

growth. Our model has a key self-referential property: comovement and mutual influence

of the long-run growth expectations and market outcomes. This feedback from equilibrium

outcomes to agents’subjective beliefs of long-run growth is absent from RE models where

agents learn about the exogenous (productivity) process. However, this interplay between

growth expectations and equilibrium outcomes is crucial to produce the positive correlation

between long-run growth forecasts and cyclical activities present in the data.

The results of this paper are similar in spirit to Adam, Beutel and Marcet (2015) which

documents a positive correlation between stock price growth expectations (at different hori-
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zons) and price dividend ratio (which may be interpreted as detrended stock prices) in U.S.

stock markets. They show RE asset pricing models tend to produce a negative correlation

between expected returns and price dividend ratio. Taking their paper and ours together,

learning about the (trend) growth of endogenous variables is the key to producing these

positive correlations and in explaining phenomena that are puzzling from the viewpoint of

RE. The interplay of growth expectations and market outcomes is crucial in explaining the

boom-bust cycle in U.S. stock markets (see Adam, Beutel and Marcet (2015)), equity pricing

facts in the U.S. (see Adam, Marcet, Nicolini (2015)) and house prices in major industrialized

economies (see Adam, Kuang and Marcet (2012)).

Our learning model delivers other important improvements to business cycle models.

Business cycle models with RE usually rely on large exogenous shocks to reproduce salient

features of cyclical fluctuations. This is viewed as unrealistic by many economists eg.

Cochrane (1994) and Kocherlakota (2009). Learning strongly amplifies the response of ag-

gregate activities to economic shocks. To match the Hodrick-Prescott (HP)-filtered output

volatility in the data, our learning model requires 47% smaller standard deviation of pro-

ductivity shocks relative to the RE version of the model. The relative volatility of growth

rate of productivity shocks to output is 0.143 in the learning model, which is close to the

value 0.131 estimated in Burnside, Eichenbaum, and Rebelo (1996). The learning model also

(1) generates 119% and 50% higher standard deviation in hours and investment relative to

the RE version of the model and are closer to the data, (2) produces positive comovement

between consumption, investment, working hours and output, and (3) improves the internal

propagation by producing the degree of positive autocorrelation observed in output growth

as well as the growth of consumption, investment and hours present in the data.

The rest of the paper is organized as follows. Section 2 presents evidence on observed

forecasts and Section 3 the model setup. Our learning model is described in Section 4 and

the quantitative results are presented in Section 5. Section 6 shows that full and imperfect

information RE models are inconsistent with this evidence. Section 7 shows that existing
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AL models appear inconsistent with the evidence. Section 8 concludes.

2 ObservedMacroeconomic Forecasts and Cyclical Fluc-

tuations

This section documents evidence on a) observed long-run growth forecasts, b) their posi-

tive comovement with cyclical macroeconomic variables, and c) short-term macroeconomic

forecasts that we seek to quantitatively replicate with our learning model.

2.1 Long-Run Growth Forecasts

This section presents forecasts of the long-run growth of real gross domestic product (GDP)

and real output per hour. In the left panel of figure 1, the solid line is the U.S. annual real

GDP growth from 1995 to 2014. The dashed line is a proxy of the actual long-run GDP

growth constructed by applying the HP filter with a smoothing parameter of 100.2 Two

proxies for real-time forecasts of long-run output growth are also plotted. One proxy is the

real-time potential output growth estimates prepared by the U.S. Council of Economic Ad-

visors (CEA), reported in its annual Economic Report of the President (ERP) and published

in January (or February) of each year.3 The other proxy is the median forecast in the Survey

of Professional Forecasters (SPF) for the annual average rate of growth of real GDP over

the next 10 years published in February of each year. The right panel plots the same (four)

times series for real output per hour growth.4

The observed forecasts suggest gradual recognition and learning of the long-run growth of

2Edge, Laubach and Williams (2007) use this method to construct the trend growth of U.S. labor pro-
ductivity. The results obtained in Table 1 are robust to a wide range of choices of the smoothing parameter.

3Potential output growth is viewed as output growth in the long-run. Therefore, the CEA also regards
the estimates as the long-run growth forecasts in the annual ERP. 1995 is chosen as the starting year because
the ERPs are available online from this year onwards.

4In the right panel of figure 1, the real output per hour is nonfarm business sector real output per hour
from the FRED database. “CEA forecast”is the CEA forecast for trend productivity growth (measured by
nonfarm business sector real output per hour). SPF simply asks “productivity.”
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output and output per hour. In addition, observed forecasts for the long-run growth of real

GDP and real output per hour display systematic one-sided errors. During the late 1990s and

early 2000s, there was an acceleration of long-run real output growth and long-run output

per hour growth, while agents only gradually revised their growth expectations upward

and persistently underpredicted the long-run GDP growth. Thereafter, there was a period

of slower long-run growth; agents only gradually revised the long-run growth expectations

downward and persistently over-predicted the long-run growth. The autocorrelation for

forecast error of long-run real GDP growth is 0.95 for SPF median forecasts and 0.96 for

CEA forecasts, while for long-run real output per hour it is 0.94 for SPF median forecasts

and 0.98 for CEA forecasts; see Panel A of Table 1.

The flip side of very persistent long-run growth estimation error is the strongly positive

autocorrelation of output gap revisions. Edge and Rudd (2012) find that the Federal Re-

serve’s Greenbook revision in output gap —defined as the difference between the final and

real-time gap estimates —has an autocorrelation coeffi cient on the order of 0.9 during 1996-

2006. They show that this auto-correlation coeffi cient measure is robust to a wide range of

univariate detrending approaches and to different choices of time periods; see page 5 and

Table 3 of their paper. They suggest this points to gradual learning of the economy’s trend

growth by the Federal Reserve.

2.2 Comovement Between Long-Run Growth Forecasts and Cycli-

cal Activities

This section documents—to our knowledge for the first time—the comovement between long-

run growth expectations and cyclical activities. Panel B of Table 1 reports the correlation

between long-run real GDP growth expectations (SPF forecasts) and detrended real output,

investment, consumption and working hours, while Panel C reports the same correlations
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using long-run output per hour growth forecasts.5 Three detrending methods are considered:

linear, quadratic detrending and HP filter with smoothing parameter 100.

There is a positive correlation between long-run output growth expectations and cyclical

activities; the corresponding correlation coeffi cient for output is 0.49 − 0.75, consumption

0.31 − 0.82, investment 0.46 − 0.74, and hours 0.30 − 0.59, depending on the detrending

methods. Similarly, the correlation between long-run output per hour growth forecasts and

cyclical activities is positive; the corresponding correlation coeffi cient for output is 0.48−0.70,

consumption 0.57−0.71, investment 0.47−0.58, and hours 0.22−0.38.6 The long-run growth

forecasts tend to be high during expansions, and contrariwise during contractions.

2.3 Short-Term Forecasts

The short term forecast errors from SPF display a similar systematic pattern documented in

e.g., Eusepi and Preston (2011). They show, for example, the median agent tends to under-

predict interest rates and overpredict unemployment over expansions, and contrariwise dur-

ing contractions. Online Appendix A1 shows that the median agent tends to under-predict

real output growth over expansions and contrariwise during contractions using 1-quarter

ahead forecast data. Panel D of Table 1 reports the autocorrelation of median 1-quarter

forecast errors for real GDP growth, two measures of interest rates, and unemployment, all

of which display a positive correlation.7

5Data is from the Bureau of Labor Statistics. Output is real GDP. Nominal consumption is con-
structed as the sum of nondurable goods, services, and government expenditures. Nominal invest-
ment is calculated as the sum of private residential investment, equipment and software, and con-
sumption durable goods. Nominal consumption and investment are deflated by using the GDP de-
flator. For hours, we use the data of total hours in Hall (2014) from 1989-2013 available at
http://web.stanford.edu/~rehall/Recent_Unpublished_Papers.html.

6Positive correlations are robustly produced between long-run output (or output per hour) growth fore-
casts and all four detrended variables (output, consumption, investment and hours) for all three detrending
methods under consideration using CEA forecasts.

7Using real time data, the autocorrelation of errors in 1, 2, 3 and 4-quarter-ahead real GDP growth
forecasts are 0.23, 0.35, 0.36 and 0.38.
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3 Model Setup

Our model is a standard RBC model with four main features: King-Plosser-Rebelo (KPR)

non-separable preferences between consumption and leisure, constant returns to scale tech-

nology, variable capital utilization, and a random walk with drift productivity process.

Households have KPR non-separable preferences between consumption and leisure which

is consistent with a balanced growth path; see eg. King and Rebelo (1999).8 The represen-

tative household maximizes

Êt

∞∑
t=0

βtu(Ct, Lt); u(Ct, Lt) =
C1−σ
t v(1− Lt)

1− σ

subject to the flow budget constraint

Ct +Kt+1 = RK
t (UtKt) +WtHt + (1− δ(Ut))Kt.

Êt denotes the subjective expectations of agents for the future, which agents hold in the

absence of RE. RE analysis is standard. Ct, Lt, Ht, Kt, Ut are consumption, leisure, hours,

capital and capacity utilization rate. Wt and RK
t are the wage rate and rental rate for capital

services. β is the discount rate between 0 and 1. σ > 1 and v′, v
′′
> 0. Capacity utilization

in the data displays pronounced procyclical variability (see King and Rebelo (1999)) and

is used to improve the fit of the model. Capital depreciation is assumed to increase with

capacity utilization Ut according to the function δ(Ut) = θ−1U θ
t where θ > 0.

There are a continuum of identical competitive firms of mass one. Each produces the

economy’s only good Yt using capital Kt and labor Ht as inputs according to the production

function

Yt = (UtKt)
α(XtHt)

1−α (1)

8Households are assumed to have the same preferences and constraints, firms the same technology, and
beliefs are homogenous across agents (though no agent is assumed to be aware of this); hence, in what follows
we do not distinguish explicitly between individual agents and firms.
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where 0 < α < 1. Each firm maximizes profits, Πt = Yt − RK
t UtKt −WtHt, choosing labor

and capital inputs and taking factor prices as given. Stochastic variations in the technology

factor are the source of aggregate fluctuations and we assume that the technology factor

Xt is a random walk with drift following Rotemberg and Woodford (1996) and Eusepi and

Preston (2011), i.e.

log(Xt/Xt−1) = γt = log(γ) + γ̂t (2)

where γ̂t is an independently and identically distributed (i.i.d) random variable with zero

mean and standard deviation σγ and γ > 0. Details of the first order conditions of the

household and firm, steady state and the log-linear approximation are presented in Online

Appendix B.

We denote detrended variables by lower case letters. Balanced growth requires con-

sumption, investment, output, the capital stock, and real wages to grow at the rate of the

stochastic trend so that kt = Kt

Xt−1
, yt = Yt

Xt
, ct = Ct

Xt
etc are stationary. Hours and the rental

rate of capital are stationary. Log-linearizing the model, utilizing the labor supply condition

and iterating the flow budget constraint yield the intertemporal budget constraint

εcÊt

∞∑
T=t

β̃
T−t

ĉT = β̃
−1
k̂t + Êt

∞∑
T=t

β̃
T−t [

εwŵt + R̃R̂K
t − β̃

−1
γ̂T

]

β̃ is growth-adjusted discount factor. Hatted variables are percentage deviations from the

steady state. The coeffi cients εw and εc are constant composite parameters. This equation

says that the expected present value of consumption must be equal to the initial capital

stock plus the expected present value of wage and rental income.

Utilizing the consumption Euler equation and the intertemporal budget constraint, we
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obtain the consumption decision rule

ĉt + σ−1ψ(1− σ)Ĥt =
(1− χ)(1− β̃)

εc

[
β̃
−1
k̂t + R̃R̂K

t − β̃
−1
γ̂t +

(
εw + εc

χ

1− χ

)
ŵt

]
Êt

∞∑
T=t

β̃
T−t

∆1R̂
K
T+1 + Êt

∞∑
T=t

β̃
T−t

∆2ŵT+1 (3)

The composite parameters ψ, ∆1,∆2, χ are explained in Online Appendix B. Equation (3)

says that the linear combination of consumption and labor supply depends on the forecast

of the discounted sum of future rental rates, wage rates, and productivity as well as current

capital stock, productivity and market prices. We consider a symmetric equilibrium in

what follows. To determine equilibrium prices and quantities, the learning model needs

to be augmented by belief specification and updating presented in Section 4. The adaptive

learning model has the same model equations. The different macroeconomic dynamics under

AL relative to RE arises solely from different expectations in the consumption equation (3).

4 Learning about Long-Run Growth

Agents have imperfect knowledge of the long-run growth of endogenous variables and need

to forecast wage rates and rental rates up to the indefinite future to make consumption

decisions; see (3). They are assumed to have a simple econometric model, relating wages

and the capital rental rate to the aggregate stock of capital

∆ logRK
t = ωr0 + ωr1∆ logKt + ert (4)

∆ logWt = ωw0 + ωw1 ∆ logKt + ewt (5)

∆ logKt+1 = ωk0 + ωk1∆ logKt + ekt , (6)

where ert , e
w
t , and e

k
t are regression errors. We specify agents’PLM directly in terms of levels

(or differences) of the data. The beliefs have the same functional form as the linearized
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minimum-state-variable RE solution to the model (reformulated in levels). In the RE so-

lution, ωr0 = −ωr1 log γ, ωw0 = (1 − ωw1 ) log γ, ωk0 = (1 − ωk1) log γ, ωr1 = ωr1, ω
w
1 = ωw1 , ω

k
1 =

ωk1, e
r
t = −ωr1γ̂t, ewt = (1 − ωw1 )γ̂t, and e

k
t = (1 − ωk1)γ̂t where bar coeffi cients denote RE

values.9

Let ωi
′

= (ωi0, ω
i
1) for i = r, w, k. zrt = ∆ logRK

t , z
w
t = ∆ logWt, z

k
t = ∆ logKt+1, and

q
′
t−1 = (1,∆ logKt) . Beliefs at period t, ωit are updated recursively by the constant-gain

Generalized Stochastic Gradient (GSG) learning algorithm as in Evans, Honkapohja and

Williams (2010, henceforth EHW)

ω̂it = ω̂it−1 + giΓqt−1

(
zit − ωi

′

t−1qt−1

)′
(7)

where ω̂it denotes the current-period’s coeffi cient estimate.
10 Γ controls the direction of belief

updating and gi ∈ (0, 1) , the constant gain, determining the rate at which older observations

are discounted. Bayesian and robustness justification for the GSG algorithm are provided in

EHW. In particular, they show that (1) GSG learning algorithm asymptotically approximates

the Bayesian optimal estimator when agents allow for drifting coeffi cients models, and (2)

it is also the “maximally robust”estimator when agents allow for model uncertainty. As is

standard in the literature, beliefs at t are updated using data up to period t− 1.

Analogous to (4) — (6), agents are assumed to have the following PLM for aggregate

output and output per hour

∆ log Yt = ωy0 + ωy1∆ logKt + eyt (8)

∆ log (Yt/Ht) = ωpr0 + ωpr1 ∆ logKt + eprt (9)

9It can be shown that ωr1, ω
w
1 , and ω

k
1 are exactly the corresponding coeffi cients in the detrended and

linearized RE solution for rental rates, wage rates and capital.
10An alternative learning rule is the constant-gain recursive least squares (CG-RLS) algorithm. Online

Appendix C4 shows that the impulse response functions of our model with CG-RLS learning are similar
to the results with GSG learning. However, CG-RLS learning often imposes a projection facility on beliefs
and/or generates singularity problem in inverting the moment matrix; this is perhaps not fully desirable and
we prefer presenting our results with GSG learning where the projection facility is not invoked.
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where eyt and e
pr
t are regression errors. They relate output and output per hour to capital as

under RE. The forecast of long-run growth of output and output per hour are related to the

forecast of the long-run growth of capital. They can be obtained by taking unconditional

expectations of equations (6), (8), and (9) and combining the resulting equations; Online

Appendix D1 provides the analytical formula.

5 Quantitative Results

This section evaluates the empirical performance of our learning model and contrasts it with

that of the full-information RE model.

5.1 Calibration

The model is calibrated to the postwar US data. The business cycle data statistics are taken

from Eusepi and Preston (2011) and their Appendix provides a description. The discount

factor β̃ is set to 0.99, the capital share α to 0.34, the depreciation rate δ to 0.025 and the

unconditional mean of productivity growth γ̄ to 1.0053. The inverse of Frisch elasticity of

labor supply is 0.1. The standard deviation of productivity shock σγ is calibrated to match the

standard deviation of HP-filtered output volatility. The parameter σ in the utility function

is chosen to match the consumption growth volatilities and set to 1.9. Evidence on observed

forecasts is used to discipline the choice of the gain parameter in line with Eusepi and Preston

(2011). The gain parameters gk and gw are set to 0.014 and gr to 0.03. The larger gain

parameter gr compared to gk and gw may be justified by the smaller measurement error (or

larger signal-noise ratio) in interest rates vis-a-vis capital and wage rates.11 The moment

matrix in (7) is set to the identity matrix, corresponding to the classical Stochastic Gradient

(SG) algorithm.12 Online Appendix C presents the quantitative results to alternative values

11Branch and Evans (2011) use heterogenous gain parameters in their learning model of stock market
bubbles and crashes.
12Adopting the Bayesian interpretation of the GSG algorithm, Evans, Honkaphoja and Williams (2010),

p. 240, indicate that the choice of the perceived parameter innovation covariance V = γ2σ2Mz (in their
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of the labor supply elasticity, gain parameter, moment matrices in the GSG learning rule

and the constant-gain recursive least squares learning rule.

5.2 Impulse Response Functions

Figure 2 depicts the impulse response functions under RE and learning for 40 quarters in

response to a 1% positive productivity shock. For stationary variables, percentage deviations

from the steady state are plotted, while percentage deviations from the unshocked balanced

growth path are reported for nonstationary variables. For the learning model, agents’initial

beliefs are set equal to the corresponding RE values, which yields identical impact response

of the learning model as under RE.13

Under RE, there is a shortfall of capital after the shock. This raises the marginal product

of capital and hence the real interest rate. This implies the marginal utility of consumption

must fall over time. Capacity utilization rises on impact due to the increase in rental rates.

Output rises initially because working hours, capacity utilization and productivity increase

initially. The high interest rates induce people to postpone their consumption and leisure

and both variables increase over time. Output, on the other hand, decreases over time: this

is because capacity utilization and working hours decrease over time and this is suffi ciently

pronounced to offset the effect on output from the rise in capital stock.

The improvements in the learning model arise from belief revisions and the interplay of

beliefs and market outcomes. After the impact period, high realization of rental rates and

wage rates leads to upward revision of the forecasts for the discounted sum of wage and rental

notation) yields classical SG learning. They show that the SG learning algorithm is not scale invariant (pp.
260-261). This is because when they change the units of regressors, they do not change the corresponding
prior of the perceived variance covariance matrix V = γ2σ2Mz. However, the prior should be suitably
adjusted to Ṽ = γ2σ2Mz̃ in response to a change in the units of regressors. The quantitative results of our
learning model are then scale invariant and remain exactly the same in response to a change in the units of
regressors.
13We note that the difference between median of the stationary distribution of agents’ beliefs and the

corresponding RE values is very small. We use a relative measure ie. median belief minus the corresponding
RE value divided by the RE value to measure this difference. This relative measure for the intercept term
of the capital equation and rental rates equation are about 1%. And for the remaining four coeffi cients in
agents’PLM, this measure is smaller than 0.1%. The median and mean of the stationary distribution of the
beliefs are also very close.
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rates, as can be seen in figure 3. The optimism about future wage rates helps to produce a

further rise in consumption. Working hours increase as firms’labor demand increases and

the constant-consumption labor supply shifts rightward. The increase in the return to capital

due to rising productivity and working hours induces an increase in investment. Output also

rises due to increases in productivity, working hours, investment and capacity utilization.

At some point, the realized wage rate growth falls short of their forecasts and they start

revising their belief of wage rate growth downward. Associated with the downward belief

revision is a decline in consumption and other aggregate activities. The mutual influence of

agents’expectations and equilibrium outcomes yields a decline in aggregate activities.

Rotemberg and Woodford (1996) demonstrated basic RE business cycle models (with-

out variable utilization rates of capital) do not generate the positive comovement between

consumption (C), investment (I), hours (H), and output (Y) in the data. Our RE model

with variable capacity utilization confirms the same finding in Figure 2. In contrast, Fig-

ure 2 shows that there is positive comovement between C, I, H and Y under learning after

impact. Moreover, learning strongly amplifies the response of output, hours and investment

and improves the internal propagation of the model evident in the persistent rise and fall of

the four variables.

Figure 4 plots impulse response of long-run growth forecasts for output and output per

hour on the top panel and 1-quarter ahead forecast error for output growth and rental rates in

response to the productivity shock. The two long-run growth forecasts rise for several periods

and then converge towards the RE value. Figures 2 and 4 suggest a positive correlation

between long-run growth forecasts and cyclical activities. The 1-quarter ahead forecast

errors —defined as the forecasts from the previous period minus the outturns —for output

and rental rates become negative following the shock and are positively autocorrelated.
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5.3 Statistical Properties

To compare with postwar US data, we calculate business cycle statistics based on 162 quar-

ters. The learning model is simulated for 2000 + 162 periods and 500 repetitions. The first

2000 periods are used to generate the stationary distribution of beliefs and the final 162

periods are used to calculate the business cycle statistics. Median statistics are reported

along with the standard deviations in the parenthesis. The learning model is stable and no

projection facility is used in producing the statistics.

Panel A of Table 2 compares the autocorrelation of long-run and short-term forecast

errors in the data and in the learning model. The learning model quantitatively matches

well the autocorrelation of the long-run growth forecast error and produces somehow higher

autocorrelation of 1-quarter ahead forecast error for GDP growth and real interest rate.14

The mutual influence of beliefs and market outcomes in the learning model also produces a

positive correlation between the long-run growth forecasts of output (or output per hour)

and HP-filtered output, hours, consumption, and investment present in the data (refer to

Panel B and C of Table 2).

Table 3 reports major business cycle statistics. Recall that the standard deviation of the

productivity shocks is chosen to match the HP-filtered output volatility in the data. This

results in a standard deviation of productivity of 0.52% in the learning model and 0.99%

in the RE model i.e. the learning model requires 47% smaller standard deviation of the

productivity shocks. The standard deviation of hours and investment relative to output is

119% and 50% higher in the learning model and is closer to that in the data.

Burnside, Eichenbaum, and Rebelo (1996, henceforth BER) reported 0.131 as the relative

volatility of productivity shocks (measured by the Solow residuals associated with the US

manufacturing sector during 1972-1992) to output after correcting for capital utilization, see

14The errors in long-run growth forecast are computed here as the forecasts minus the constant log(γ).
Strong autocorrelation of long-run growth forecast errors is due to slow convergence of the growth beliefs;
see the top panels of Figure 4. Alternatively, the long-run growth forecast errors can be calculated as the
forecasts minus the HP-filtered trend output growth, which gives similar results; the median autocorrelation
of long-run growth forecast errors for both output and output per hour is 0.99.
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their Table 1. This suggests a 70% drop in the volatility of the growth rate of productivity

shocks relative to output than the number used in the basic RBC model; so a successful

model must display much stronger amplification than the basic RBC model. Our learning

model can produce strong amplification of productivity shocks; this ratio in the learning

model is 0.143 and close to the BER estimate.15

Panel B of Table 3 reports autocorrelation in the growth rates of C, I, Y, H and pro-

ductivity. The RE model generates almost no propagation of the productivity shock; in

particular, it does not generate the degree of autocorrelation of output growth present in the

data as pointed out by Cogley and Nason (1995). As is evident from this table, a similar

comment applies to the growth of C, I, H and productivity. The learning model generates

strong propagation and produces somehow higher autocorrelation of the growth rates data.

The first-order autocorrelation of output growth is 0.48 in the learning model (in contrast

to 0.30 in the data); this positive autocorrelation arises from belief revision and the inter-

action of beliefs and market outcomes evident in the impulse response functions in Figure

2. The learning model also generates strong propagation in other variables including labor

productivity.

Panel C and D report the business cycle statistics using data on growth rates. The

learning model delivers a good fit to the volatility of output growth and other relative

standard deviations, such as investment and hours growth volatilities. It also generates

significantly better correlation between productivity growth and output growth ρ∆ Pr,∆Y and

between productivity growth and hours growth ρ∆ Pr,∆H .
16

15The counterpart to the total factor productivity (TFP) shocks in BER (1996) in our model is (1− α)γ̂t
with α = 0.34. The standard deviation of the growth rate of productivity shocks and output in our model is
0.52% and 3.62%/4. So the ratio of the volatility of the growth of TFP to output is (1− 0.34)

2 (0.52%)2

(3.62%/4)2
=

0.143.
16Online Appendix D2 reports correlations of HP-filtered data and Appendix C shows that the quantitative

results are robust to alternative parameterizations of the model and learning rules.
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6 Knowledge About Trend in RE Models

This section shows existing full-information and imperfect information RE models cannot

produce the facts reported in sections 2.1 and 2.2. The productivity process (2) is augmented

as

log(Xt/Xt−1) = log(γt) + γ̂t (10)

log(γt) = (1− ργ) log(γ) + ργ log(γt−1) + γ̂t. (11)

ργ is in (−1, 1], γ̂t are i.i.d shocks to trend growth rates and log(γ) is the unconditional mean

of the trend growth rates. Most RE models assume ργ = 0 and γ̂t = 0 which reduces to our

process (2) eg. King and Rebelo (1999). The formulation (10)-(11) allows for time-varying

and persistent trend growth rates as in e.g. Aguiar and Gopinath (2007) and Edge, Laubach

and Williams (2007).

Section 6.1 (Section 6.2) shows that existing full information and imperfect information

RE models with |ργ| < 1 (ργ = 1) produce counterfactually zero (negative) correlation

between long-run growth forecasts and cyclical activities, which is inconsistent with the

evidence in Section 2.2.

6.1 Mean-Reverting Trend Growth (|ργ| < 1)

In full-information models e.g., Aguiar and Gopinath (2007), agents can observe productivity

growth and its trend component. They have suffi cient information —such as the knowledge

of other agents’ beliefs, preferences and technology — to derive the equilibrium mapping

from the trend growth of exogenous variables (e.g. productivity) to the trend growth of

endogenous variables (e.g. output, output per hour); they know exactly the law of motion of

endogenous variables and their long-run growth. These RE models (with or without time-

varying trend growth) are inconsistent with the facts documented in Section 2.1 and 2.2

because (1) agents’ long-run output (and output per hour) growth forecasts are constant
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(log(γ)) and do not display systematic errors, (2) the correlation between long-run growth

forecasts and cyclical activities is zero.17

Another class of models assume agents have less information and cannot observe the trend

growth rates of the exogenous (productivity) process, such as Edge, Laubach and Williams

(2007) and Boz, Daude, and Durdu (2011). Agents face a signal extraction problem; they use

the new observation of productivity to update their trend growth beliefs. However, agents in

these models are endowed with the knowledge of ργ and log(γ), so their long-run productivity

growth forecasts are constant (log(γ)) over time. Since agents know the equilibrium mapping

from long-run productivity growth to long-run output (and output per hour) growth, all these

growth forecasts are equal to log(γ). These models also produce zero correlation between

long-run output (or output per hour) growth forecasts and cyclical activities. Moreover, as

a consequence of RE, the long-run growth forecast errors in endogenous variables will not

display a systematic pattern, which is inconsistent with the evidence in Section 2.1.

6.2 Random Walk Trend Growth (ργ = 1)

We now show that in the case ργ = 1 (e.g. considered in Edge, Laubach and Williams

(2007)), full-information and imperfect information RE models produce a negative correla-

tion between long-run output (or output per hour) growth forecasts and cyclical activities.

Agents update their trend growth beliefs via a constant-gain learning rule (or equivalently the

Kalman filter with steady state updating coeffi cients) log(γ̃t) = log(γ̃t−1)+gx(log(Xt/Xt−1)−

log(γ̃t−1)). Economic decisions are based on their beliefs about the trend productivity growth.

For illustration, the gain parameter gx is set to 0.11/4 as in Edge, Laubach, and Williams

(2007). The standard deviation of γ̂t is set to 0.52% as in our adaptive learning model; the

standard deviation of the shock to long-run growth rate is set to 0.015% implied by the

chosen gain. All other parameters are identical to those in our benchmark setting. (Similar

17These comments also apply to full-information RE models which do not explicitly model the trend
component but start directly with detrended variables or the cyclical component. This is because implicitly,
agents in these models also have exact knowledge about the law of motion for the trend.
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shapes of IRFs are found for alternative values of gain parameters.). The long-run growth

forecasts for productivity, output and output per hour are the same due to agents’exact

knowledge of the equilibrium mapping.

Figure 5 reports the response of detrended variables (measured as percentage deviations

from the steady state) and the annualized long-run growth forecasts to a positive 1% shock

to the level of productivity. The full-information model is labeled “REF”and the imperfect

information model is labeled “REL”. The REF model produces constant long-run growth

forecasts and zero correlation between the forecasts and detrended variables; the level shock

does not change long-run growth forecasts. In the REL model, long-run growth forecasts

are not constant. The positive shock leads to an upward revision of the long-run growth

forecasts. The impact response of Y, I, C, and H are smaller in the REL model relative

to REF due to higher long-run growth expectations and larger wealth effects on leisure.

Associated with a rise in the long-run growth forecasts is a decline in Y, I, C, and H. After

the impact period, agents revise their long-run growth forecasts down. Associated with this

downward belief revision is rising Y, I, C, and H. This suggests negative comovement between

long-run growth forecasts and detrended macro variables.

Our adaptive learning model is better able to reproduce the relevant business cycle volatil-

ities than the RELmodel mainly due to the feedback frommarket outcomes to agents’beliefs.

Comparing Figure 2 with Figure 5, the amplitude of the response of output, investment, and

hours in our adaptive learning model is 54%, 90% and 108% larger than the corresponding

numbers of the REL model.

Figure 6 displays the response to a positive one standard deviation shock to trend pro-

ductivity growth. Under REF, (detrended) Y, I, C, H decline a lot due to the large wealth

effects in the impact period, while long-run growth forecasts increase on impact. The fore-

casts stay constant afterwards associated with which are rising Y, I, C, H. Again these

suggest a negative correlation between long-run growth forecasts and detrended variables.

Under REL, long-run growth forecasts increase much less initially relative to REF and as
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a consequence, cyclical aggregate activities decline by less. There is negative comovement

between the long-run growth forecasts and detrended variables.

Before concluding this section, we remark that shocks to trend productivity growth, as

eg. in (10)-(11), are not required by our learning model (presented in Section 4) to generate

the high autocorrelation in trend growth rates of output and output per hour evidenced

in the data. Our model with zero correlation in trend productivity growth endogenously

generates an autocorrelation coeffi cient of 0.99 and 0.996 for trend output growth and trend

output per hour growth respectively, using HP-filtering; the corresponding numbers in the

data are 0.99 and 0.984 (see e.g. Figure 1).

7 Adaptive Learning (AL) Models

This section shows that the belief specification in existing AL business cycle models imply

that agents have exact knowledge of the trend growth of endogenous variables (as under RE).

Therefore, these models produce constant long-run growth forecasts and zero correlation

between long-run growth forecasts and cyclical activities, which appear inconsistent with

the observed forecasts.

AL modelers make weaker informational assumptions with agents having incomplete

knowledge of the structure of the economy analyzing macroeconomic policy and their em-

pirical implications, such as Bullard and Mitra (2002), Evans and Honkapohja (2003), and

Eusepi and Preston (2011). These models assume agents only learn detrended variables and

typically the parameter coeffi cients in the detrended and linearized RE solution. Take the

following perceived law of motion (PLM) as an example

R̂K
t = ωr0 + ωr1k̂t + ωr3γ̂t + ert , (12)

ŵt = ωw0 + ωw1 k̂t + ωw3 γ̂t + ewt , (13)

k̂t+1 = ωk0 + ωk1k̂t + ωk3γ̂t + ekt ; (14)
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ω′s are agents’ belief parameters and ert , e
w
t , and ekt are regression errors.

18 Under RE,

ωr0 = ωw0 = ωk0 = 0 and ert = ewt = ekt = 0; ω
′
1s and ω

′
2s are RE coeffi cients. Under adaptive

learning, agents are uncertain and learn about ω′s. The intercept terms in (12)-(14) can be

interpreted as agents’uncertainty about the non-stochastic steady state or the level of the

trend component (in contrast to exact knowledge of the level of the trend under RE).

We reformulate (12)-(14) in levels and perform the Beveridge and Nelson (1981) decom-

position for log rental rates, wage rates, and capital. logZP
t denotes the trend component of

variable logZt.

Proposition 1 The belief specification (12)-(14) implies that households’perceived law of

motion for the trend component of log rental rates, wage rates, and capital are

log(RK
t )P − log(RK

t−1)P = 0 (15)

logW P
t − logW P

t−1 = log γ + γ̂t (16)

logKP
t+1 − logKP

t = log γ + γ̂t (17)

Online Appendix E provides the proof. Agents know exactly the trend growth rate

of rental rates, wage rates, and capital, including not only the deterministic but also the

stochastic component. The growth component of trend wage rates and capital, i.e., the right

hand sides of (16) and (17), are identical to the growth component of the productivity process,

i.e., the right hand side of (2). To emphasize, they know that the unconditional mean growth

rate of wages and capital is identical to that of the productivity process. Moreover, they also

know precisely how a shock to the productivity (γ̂t) affects the evolution of the permanent

component of wages and capital (i.e. they know that the coeffi cient of γ̂t is 1!). The growth

component of rental rates, i.e., the right hand side of (15) is zero; this implies that agents

know that the permanent component log(RK
t )P is constant over time and hence that log(RK

t )

is stationary. Beyond knowing that some endogenous variables are stationary and that the
18Eusepi and Preston (2011) and Huang, Liu and Zha (2011) use similar formulations; the latter assumes

that agents only learn about the steady state of capital i.e. ωk1 = ωk3 = 0.

21



rest non-stationary, the belief specification (12)-(14) implies that agents know the existence

of a balanced growth path. In particular, agents are aware that the non-stationary variables

share a common trend which is equal to the growth rate of productivity.19 Online Appendix

F provides a graphic illustration on how our learning model is conceptually different from the

formulation of learning with detrended data and with the full-information RE benchmark.

Given agents’exact knowledge of the trend growth, it follows that the long-run output

(and output per hour) growth forecasts in these AL models will be constant, i.e., log(γ) and

not correlated with cyclical activities.

8 Conclusion

Macroeconomic models used for analyzing economic fluctuations and welfare separate an

underlying growth path or trend from the cycle and assume agents have exact knowledge

of the law of motion for the trend component of endogenous variables including their long-

run growth. These models produce zero correlation between long-run growth forecasts and

cyclical activities and do not display systematic forecast errors in long-run growth. These

implications are inconsistent with observed forecasts which suggest a positive correlation be-

tween the long-run output (or output per hour) growth forecasts and cyclical activities and

strongly positive autocorrelation of the long-run growth forecast errors in output (and output

per hour). A simple RBC model with learning about the long-run growth of endogenous vari-

ables is developed. This model can produce these positive correlations and suggests a critical

role for shifting long-run growth expectations to understand business cycle fluctuations.

19The same arguments apply to models with under-parameterized PLMs, eg. Huang, Liu and Zha (2011)
(see also Adam (2007) for an under-paramterized PLM in a sticky price model). The arguments also apply to
AL models with over-parameterized PLMs and to Bullard and Duffy (2005) and Mitra, Evans and Honkapo-
hja (2013) where agents learn the law of motion of (detrended) linearized variables rather than percentage
deviations from the non-stochastic steady state; see the proof in Online Appendix E.
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Table 1: Forecast properties: data

Panel A: Autocorrelation of long-run growth forecast errors

SPF median (baseline) CEA forecast

Real GDP 0.95 0.96

Output per hour 0.94 0.98

Panel B: Corr(long-run real GDP growth forecasts, detrended variables)

HP-filter (baseline) Linear Quadratic

Output 0.49 0.53 0.67

Consumption 0.62 0.34 0.72

Investment 0.56 0.73 0.71

Hours 0.24 0.50 0.37

Panel C: Corr(long-run output per hour growth forecasts, detrended variables)

HP-filter (baseline) Linear Quadratic

Output 0.48 0.70 0.55

Consumption 0.71 0.57 0.71

Investment 0.47 0.58 0.55

Hours 0.22 0.38 0.38

Panel D: Autocorrelation of 1-quarter ahead forecast errors

Real GDP growth 0.37 Corporate bond 0.40

Ex post interest rate 0.38 Unemployment rate 0.58
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Table 2: Forecast properties: learning model and data

Data Learning Data Learning

Panel A: forecast error autocorrelation

Long-run output growth 0.95 0.97 Long-run Y/H growth 0.94 0.97

(0.02) (0.02)

Output growth 0.37 0.48 Real interest rate 0.38 0.48

(1Q ahead) (0.06) (1Q ahead) (0.06)

Panel B: Corr(long-run real GDP growth forecasts, detrended variables)

Output 0.49 0.47 Investment 0.56 0.47

(0.12) (0.12)

Consumption 0.62 0.44 Hours 0.24 0.47

(0.12) (0.12)

Panel C: Corr(long-run output per hour growth forecasts, detrended variables)

Output 0.48 0.45 Investment 0.47 0.46

(0.12) (0.12)

Consumption 0.71 0.43 Hours 0.22 0.45

(0.12) (0.12)
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Table 3: Business Cycle Statistics

Data Model Data Model

RE Learning RE Learning

Panel A: (relative) standard Panel B: autocorrelation

deviation (HP-filtered data) (growth rates data)

σA - 0.99 0.52 ∆C 0.27 -0.00 0.24

σC/σY 0.55 0.75 0.47 (0.08) (0.07)

(0.00) (0.00) ∆I 0.35 -0.01 0.37

σI/σY 2.88 1.74 2.61 (0.08) (0.06)

(0.00) (0.01) ∆Y 0.30 -0.01 0.48

σH/σY 0.92 0.37 0.81 (0.08) (0.06)

(0.00) (0.01) ∆H 0.41 -0.01 0.25

σPr/σY 0.52 0.63 0.27 (0.08) (0.07)

(0.00) (0.01) ∆ Pr -0.06 0.00 -0.29

(0.08) (0.07)

Panel C: relative standard deviation Panel D: correlation

(growth rates data) (growth rates data)

σ4∆Y 3.96 4.76 3.62 ρ∆C,∆Y 0.5 1.00 0.85

(0.19) (0.25) (0.00) (0.02)

σ∆C/σ∆Y 0.55 0.75 0.53 ρ∆I,∆Y 0.74 1.00 0.95

(0.00) (0.01) (0.00) (0.01)

σ∆I/σ∆Y 2.56 1.74 2.73 ρ∆H,∆Y 0.68 1.00 0.89

(0.00) (0.03) (0.00) (0.02)

σ∆H/σ∆Y 0.8 0.37 0.91 ρ∆ Pr,∆Y 0.62 1.00 0.42

(0.00) (0.02) (0.00) (0.03)

σ∆ Pr/σ∆Y 0.74 0.63 0.46 ρ∆ Pr,∆H -0.16 0.99 -0.04

(0.00) (0.03) (0.00) (0.07)
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Figure 1. Left (right) panel: the solid line is U.S. real GDP growth (real output per hour

growth). The dashed line is the trend constructed from the HP filter with a smoothing

parameter 100. The line with circles is the CEA forecast, while the line with diamonds is

the SPF median forecast.
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Figure 2: Impulse response to 1% positive productivity shock: RE and learning
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ahead forecast error (FE) to a 1% positive productivity shock
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Figure 6: Response to a one standard deviation positive shock to trend productivity growth
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Online Appendix (Not for publication)

A Output Growth Forecasts

Figure A.1 shows that the median agent tends to under-predict real output growth over

expansions and contrariwise during contractions using 1-quarter ahead forecast data.

B Model Details

This section provides first-order conditions, the steady state and log-linearzations of the

model. The variables with a bar are the non-stochastic steady state values while the vari-

ables with a hat denote log-linearized variables around the non-stochastic steady state i.e.

xt = log Xt
X̄
. Capital letters denote levels while small case letters denote their stationary

counterparts.

Household optimization yields the following first-order conditions:

Ct : uC(Ct, Lt) = Λt

Kt+1 : βÊtΛt+1R
K
t+1Ut+1 − Λt + βÊt[Λt+1(1− δ(Ut+1)] = 0

Lt : uL(Ct, Lt) = ΛtWt

Ut : RK
t = δ′(Ut)

where Λt is the Lagrangian multiplier associated with period t budget constraint.

Steady State

From the consumption Euler equation we get

R
k
U

γ
= γσ−1β−1 − 1− δ

γ

= β̃
−1
− 1− δ

γ
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and from the capacity utilization first-order condition

R
k
U

γ
=
δθ

γ
=> θ =

R
k
U

δ

which defines θ, allowing to determine U and therefore Rk. The ratios

y

k
= (α)−1R

k
U

γ
;
i

k
= 1− 1− δ

γ
;
c

k
=
y

k
− i

k
and

c

y
=
c

k
/
y

k

Finally the steady state level ψ, for a given choice of H, is determined by

ψ =
Hv

′
(H)

v(H)
(σ − 1)−1 =

wH

y

y

c
= (1− α)

y

c

Equilibrium condition and log-linearization

Households’optimality conditions

1. Marginal utility of consumption

λ̂t = −σĉt − ψ(1− σ)Ĥt (18)

where in steady state

ψ ≡ −Hv
′(H)

v(H)
(1− σ)−1 =

wH

c

2. Euler equation

βÊt[β
−1(λ̂t+1 − λ̂t − σγ̂t+1) + (β−1 − 1− δ

γσ
)(R̂K

t+1 + Ût+1)− δ

γσ
θÛt+1] = 0

Substituting the steady-state relation into the above equation yields

R
K
U

γ
=

(
β−1 − 1− δ

γσ

)
=
θδ

γσ
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becomes

βÊt

[
β−1(λ̂t+1 − λ̂t − σγ̂t+1) + (β−1 − 1− δ

γσ
)R̂K

t+1

]
= 0 (19)

3. Labor-leisure choice:

(1− σ) ĉt + εvĤt = λ̂t + ŵt

which, combined with the expression for marginal utility, gives:

σ−1λ̂t + ŵt = εHĤt (20)

where

εH = εv −
(σ − 1)2

σ
ψ > 0

is the inverse Frisch elasticity of labor supply.

4. Capacity utilization

Ût =
R̂K
t

θ − 1

Using the expression for the marginal utility of consumption, the Euler equation becomes

λ̂t = Êt

[(
λ̂t+1 − σγ̂t+1

)
+ βRR̂K

t+1

]
−σĉt − (1− σ)Ĥt = Êt

[
−σĉt+1 − (1− σ)Ĥt+1

]
− σÊtγ̂t+1 + ÊtβRR̂

K
t+1

where

R =

(
β−1 − 1− δ

γσ

)
Firms’problem

The firms’problem is

max
UtKt,Ht

Yt −WtHt −RK
t (UtKt)
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subject to the production technology

Yt = (UtKt)
α(XtHt)

1−α

The first order condition with respect to hours:

−Wt + (1− α) (UtKt)
α(Xt)

1−αH−αt = 0

becomes

(1− α)Xα
t−1

(
Ut

Kt

Xt−1

)α
X−αt = 0

and hence

(1− α)γ−αt (Utkt)
αH−αt = wt

Combined with the definition of output gives

wt = (1− α)
yt
Ht

which in log-linear form becomes

ŵt = ŷt − Ĥt (21)

The capital input decision gives:

0 = −RK
t + α(UtKt)

α−1(XtHt)
1−α

= −RK
t + α(Ut

Kt

Xt

)α−1(Ht)
1−α

= −RK
t + α(

Ut
γt
kt)

α−1(Ht)
1−α

Using the definition of output yields

RK
t = αγt

yt
Utkt
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which in log-linear form is

R̂K
t = γ̂t + ŷt − Ût − k̂t

Finally, the evolution of capital is

Kt+1 = (1− δ)Kt + It

The log-linearized version is

k̂t+1 =
i

k
ît +

(1− δ)
γ

(
k̂t − γ̂t

)
− δθ

γ
Ût

Market clearing requires

Yt = Ct + It

The log-linearized version is

ŷt =

(
1− c

y

)
ît +

c

y
ĉt

To summarize, the system of log-linearized equations under RE is

ŵt −
(
εH −

σ − 1

σ
ψ

)
Ĥt − ĉt = 0

−ŵt + ŷt − Ĥt = 0

−R̂K
t + ŷt − Ût −

(
k̂t − γ̂t

)
= 0

−ŷt +

(
1− c

y

)
ît +

c

y
ĉt = 0

−ŷt + (1− α) Ĥt + αÛt + α
(
k̂t − γ̂t

)
= 0

−δθ
γ
Ût − k̂t+1 +

i

k
ît +

(1− δ)
γ

(
k̂t − γ̂t

)
= 0

− R̂K
t

θ − 1
+ Ût = 0

(σĉt + (1− σ)Ĥt)− Êt[((σĉt+1 + (1− σ)Ĥt+1)− σγ̂t+1)] + βRR̂K
t+1 = 0
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Consumption Decision Rule

In our learning model, the last equation in the above system is replaced by the following

consumption decision rule

ĉt + σ−1ψ(1− σ)Ĥt =
(1− χ)(1− β̃)

εc

[
β̃
−1
k̂t + R̃R̂K

t − β̃
−1
γ̂t +

(
εw + εc

χ

1− χ

)
ŵt

]
Êt

∞∑
T=t

β̃
T−t

∆1R̂
K
T+1 + Êt

∞∑
T=t

β̃
T−t

∆2ŵT+1,

which is identical to the last equation of page 7 in the Online Appendix of Eusepi and

Preston (2011) with ∆1 =

[
(1−χ)(1−β̃)

εc
− β̃σ−1

]
β̃R̃ and ∆2 =

(1−χ)(1−β̃)
εc

β̃
(
εw + εc

χ
1−χ

)
.20

Derivations and the definition of composite parameters ψ, χ, β̃, R̃, εw, εc are provided there.

C Robustness

This section provides robustness analysis of our model with alternative values of gain para-

meters, labor supply elasticity, alternative moment matrices in the GSG learning algorithm

and the constant gain recursive least squares (RLS) learning algorithm.21 In this section,

the standard deviation of the productivity shock in both the RE and our learning model are

set equal to 0.52% (as in our baseline learning model). As in the baseline learning model,

the projection facility is not used in generating statistics in this section.

C.1 Alternative gain parameters

Table A.1 demonstrates the empirical performance of the learning model under alternative

gain parameters spanning the interval (0.006, 0.017) for gw and gk and (0.017, 0.036) for gr.

Recall our baseline learning model has the gain parameter gw = gk = 0.014 and gr = 0.03.

20Except that, for the sake of economy, the forecast of the discounted sum of productivity in the cor-
responding equation of Eusepi and Preston (2011) is zero and dropped due to the i.i.d. assumption for
productivity shocks.
21Statistics not reported in the tables here are available upon request.
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The first two rows Y TG and (Y/H)TG report the autocorrelation of the long-run output

growth and long-run output per hour growth forecast errors, respectively. Row 3-4 show

the autocorrelation of one-period ahead forecast errors for rental rates (ρR
K
) and output

growth (ρY ). Panel B (Panel C) reports the correlation between long-run output (output

per hour) growth forecasts and HP-filtered data. The results of the learning model with

alternative gain parameters are robust and continue to be consistent with the evidence in

observed forecasts.

We define a measure of the degree of amplification of our learning model relative to RE,

X_dif , as follows

X_dif =
XLearn −XRE

XRE
(22)

where X = σY , σI/σY , σH/σY and XLearn is the relevant variable under our learning model

and similarly XRE under RE. Recall σY is the HP-filtered output standard deviation, σI/σY

is the relative standard deviation of investment to output and σH/σY is the relative standard

deviation of working hours to output. X_dif are reported in the first three rows of Panel

D and the first-order autocorrelation of output growth is used to measure propagation and

reported in the fourth row. Simulation results show that these statistics are robust with

respect to alternative gain parameters.

C.2 Alternative labor supply elasticities

Table A.2 reports the statistics of the learning and RE model with lower labor supply elastic-

ities ε−1
H = 2 or 7. The correlation between long-run output per hour growth and detrended

variables are very close to the corresponding numbers when long-run output growth forecasts

are used and hence not reported here and in the next section.

With labor supply elasticity of 7, the empirical performance of the learning model is quan-

titatively similar to the baseline case. When labor supply elasticity is set to 2, the learning

model generates 30%, 51% and 133% larger standard deviation for output, investment and
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hours relative to the RE model. While the learning model remains consistent with observed

forecasts, it does not generate the positive serial correlation in consumption growth.

C.3 Alternative Moment Matrices

Recall in the baseline model, the moment matrix Γ is set to the identity matrix, corresponding

to the classical Stochastic Gradient (SG) learning.22 This section considers alternative mo-

ment matrices Γ which change the direction of belief updating in different ways. Adopting the

Bayesian interpretation of the GSG algorithm, the alternative matrices imply increasing the

prior precisions of the perceived innovations to the regressor capital growth. Table A.3 and

Table A.4 display the performance of our learning model with other alternative moment ma-

trices Γ1 =

 1 0

0 0.12


−1

, Γ2 =

 1 0

0 0.052


−1

, Γ3 =

 1 0.1

0.1 1


−1

, Γ4 = M−0.5
z ,and

Γ5 = M−0.7
z where Γ = Γi, i = 1, 2, ...5 and Mz is the asymptotic second moment matrix.23

Our learning model with Γ =

 1 0

0 0.52


−1

produces identical results (up to two decimals)

as in the baseline case; hence it is not shown in the table. The quantitative results of the

learning model are robust with respect to these alternative choices of the moment matrix.

C.4 Impulse Response Functions under Recursive Least Squares

Learning

This section shows the impulse response functions (IRFs) of our learning model under the

constant gain recursive least squares learning (CG-RLS) algorithm are similar to the baseline

of GSG learning presented in the text. For illustration, the parameters are identical to our

baseline model except that the gain parameters for the CG-RLS learning are gw = gk = 0.005,

22The quantitative results of our learning model remain exactly the same in response to a change in the
units of regressors; see footnote 12.
23Page 27 of Evans, Honkapohja and Williams (2005) shows that Γ4 can be obtained by having the

parameter innovation covariance matrix V = γ2σ2I. Agents then perceive the innovation to the intercept
and coeffi cient of capital growth are independent of each other.
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gr = 0.016. The gain parameter for updating the moment matrix is also set to 0.005.

Figure A.2 displays the IRFs of our learning model with CG-RLS learning. There is

a positive correlation between long-run output (or output per hour) growth forecasts and

cyclical activities. In addition, learning produces the positive comovement of consumption

and hours, amplifies the response of Y, C, I, H and improves the internal propagation of

the business cycle model. The responses are quantitatively similar to those in the baseline

model with GSG learning.

D Additional Results

D.1 Calculation of Long-Run Growth Forecasts

In the paper, agents are assumed to have the following PLM for aggregate output and output

per hour

∆ log Yt = ωy0 + ωy1∆ logKt + eyt

∆ log (Yt/Ht) = ωpr0 + ωpr1 ∆ logKt + eprt

where eyt and eprt are regression errors. They relate output growth and output per hour

growth to capital growth as under RE.

Agents’take unconditional expectations of the PLM for capital and output or output per

hour to calculate the forecast of long-run growth of real GDP, Y TG, and output per hour,

(Y/H)TG, as follows

Y TG = ωy0 + ωy1
ωk0

1− ωk1

(Y/H)TG = ωpr0 + ωpr1
ωk0

1− ωk1

The long-run growth forecasts of output and output per hour depend on the forecast of
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long-run growth of aggregate capital.

D.2 Additional Business Cycle statistics

Table A.5 reports the correlation of HP-filtered data in our benchmark learning model along

with the standard deviations.

E Proof of Proposition 1

We now derive agents’perceived law of motion for the trend component of log rental rates,

wage rates, and capital. Agents’perceived law of motion is

R̂K
t = ωr0 + ωr1k̂t + ωr3γ̂t + ert , (23)

ŵt = ωw0 + ωw1 k̂t + ωw3 γ̂t + ewt , (24)

k̂t+1 = ωk0 + ωk1k̂t + ωk3γ̂t + ekt , (25)

Recall the productivity process follows

logXt+1 = logXt + log γ + γ̂t+1

where γ̂t+1 is an i.i.d process. We have

∆ logXt = log γ + γ̂t (26)

Lagging the above equation by one period delivers

∆ logXt−1 = log γ + γ̂t−1 (27)
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The definitions of log-linearized variables are

k̂t+1 = log kt+1 − log k (28)

ŵt = logwt − logw (29)

R̂K
t = logRK

t − logR
K

(30)

Substituting k̂t+1 and k̂t using (28) into (25) and differencing, we get24

∆ log kt+1 = wk1∆ log kt + wk3∆γ̂t + ∆ekt

Lagging the above equation by one period yields

∆ log kt = wk1∆ log kt−1 + wk3∆γ̂t−1 + ∆ekt−1 (31)

Denote by L the lag operator. Equation (31) can be transformed to

∆ log kt =
(1− L)

(
wk3 γ̂t−1 + ekt−1

)
1− wk1L

(32)

The data are detrended as follows

kt =
Kt

Xt−1

wt =
Wt

Xt

or equivalently we have

logKt = log kt + logXt−1

logWt = logwt + logXt

24In accordance with the “Anticipated Utility Approach”of Kreps (1998) adopted by adaptive learning
models, we assume that agents believe the ω′s are constant; see Cogley and Sargent (2008) for a discussion.
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Differencing the above two equations, we get

∆ logKt = ∆ log kt + ∆ logXt−1 (33)

∆ logWt = ∆ logwt + ∆ logXt (34)

Combining (27), (32), and (33), we get

∆ logKt = ∆ log kt + ∆ logXt−1

=
(1− L)

(
wk3 γ̂t−1 + ekt−1

)
1− wk1L

+ log γ + γ̂t−1

By redefining Gt = Kt+1, the above equation becomes

∆ logGt =
(1− L)

(
wk3 γ̂t + ekt

)
1− wk1L

+ log γ + γ̂t

According to the Theorem on page 29 of Granger and Newbold (1986), the sum of two

independent MA(1) processes (1− L)
(
wk3 γ̂t + ekt

)
is still an MA(1) process.

The BN decomposition25 for an ARIMA process here follows page 51 of Favero (2001).

The permanent component logKP
t follows

logKP
t+1 − logKP

t = log γ + γ̂t (35)

and the cyclical component26 is

logKc
t+1 = logGc

t

= wk1 logKc
t−1 + wk3 γ̂t + ekt

25The idea of the BN decomposition of a linear ARIMA process is as follows. For a time series zt, suppose
agents make conditional forecasts for z given data up to date t. When time goes to positive infinity, the
forecast profiles will approach a linear path with certain growth rate. The transitory component will have
no effect on the conditional forecast at the indefinite future. The permanent component of a series is the
value the series would have if it were on that long-run path in the current time period.
26The definition of the cyclical component is negative of the one used in Beveridge and Nelson (1981).
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Now we move on to BN decomposition of the wage process. Differencing equation (13)

yields

∆ logwt = ww1 ∆ log kt + ww3 ∆γ̂t + ∆ekt

Combining (34),(26) and (32) yields

∆ logWt = ∆ logwt + ∆ logXt

= ww1 ∆ log kt + ww3 ∆γ̂t + ∆ekt + log γ + γ̂t

= ww1
(1− L)

(
wk3 γ̂t−1 + ekt−1

)
1− wk1L

+ ww3 ∆γ̂t + ∆ekt + log γ + γ̂t

The permanent component becomes

logW P
t − logW P

t−1 = log γ + γ̂t (36)

and the cyclical component logW c
t is

logW c
t = wk1 logW c

t−1 + ww3 γ̂t + (ww1 w
k
3 − wk1ww3 )γ̂t−1 + ekt

The permanent and cyclical component of the rental rates process are

(logRK
t )P − (logRK

t−1)P = 0 (37)

(logRK
t )c = wk1(logRK

t−1)c + wr3γ̂t + (wr1w
k
3 − wk1wr3)γ̂t−1 + ert

We now consider an alternative PLM where agents’ subjective beliefs are specified in

detrended and log-linearized variables but not percentage deviations from the steady state

as in Bullard and Duffy (2005) or Mitra, Evans and Honkapohja (2013). In our context,
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instead of the PLM (23)-(25), suppose agents perceive

RK
t = ωr0 + ωr1kt + ωr3γt + ert (38)

wt = ωw0 + ωw1 kt + ωw3 γt + ewt (39)

kt+1 = ωk0 + ωk1kt + ωk3γt + ekt (40)

Note the rental rates, wage rates, capital, productivity shocks are detrended and linearized

but not percentage deviations. The above three equations can be reformulated as

R̂K
t = ω̃r0 + ωr1k̂t + ωr3γ̂t + ert (41)

ŵt = ω̃w0 + ωw1 k̂t + ωw3 γ̂t + ewt (42)

k̂t+1 = ω̃k0 + ωk1k̂t + ωk3γ̂t + ekt (43)

where ω̃r0 = ωr0 + logR
K

+ ωr1 log k + ωr3 log γ, ω̃w0 = ωw0 + logω + ωw1 log k + ωw3 log γ, and

ω̃k0 = ωk0 + ωk1 log k + ωk3 log γ are constant terms and do not matter for agents’perceived

trend growth. The belief specification (38)-(40) still implies that agents’perceived law of

motion for the trend is (35), (36) and (37) because the proof for the PLMs (23)-(25) can

continue to be used for (41)-(43).

F Graphic Illustration of Our Learning Model

We illustrate how our learning model (described in Section 4 of the paper) is conceptually

different from the formulation of learning with detrended data and with the full-information

RE benchmark. Figure A.3 illustrates agents’knowledge of the trend component of non-

stationary variables (e.g., income, output, capital) in these models by considering a one-off,

positive shock to labor productivity in period 1. The lower solid line is the Balanced Growth

Path (BGP) before the shock. Under RE, agents know that the shock shifts the trend

growth path upward and that it is mapped one-to-one to the impact increase of the level of
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the trend. In addition, agents know that the slope of the new BGP (i.e., the middle solid

line) is identical to that of the old path.

In the learning model where agents learn the law of motion for detrended variables, agents

too have exact knowledge that the shock is mapped one-to-one to the shift of the new trend

path and that the slope of the new BGP is not changed (as under RE). Unlike RE, however,

in this learning model agents do not know the location of the two BGPs and are uncertain

about the level of the trend component.

In our learning model, agents do not have exact knowledge of the new BGP relative to

the old one. They are uncertain about both the level and slope of the BGP after the shock.

The dotted solid line at the top in Figure A.3 represents the agents’ perceived path for

the trend after the shock in our learning model. As agents do statistical filtering, adding a

new observation to agents’information set changes the estimate of both the level and slope.

Thereafter, agents gradually revise their beliefs of the level and trend growth over time. To

reiterate, under RE or in models with learning detrending variables, agents know that the

long-run growth rates of non-stationary variables are identical to each other. In our model

agents can temporarily have the belief that the long-run growth rates of different variables

are not equal.
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Table A.1: Learning model with alternative gain parameters: statistics

Gain (gw= gk, gr)

(0.6%, 1.7%) (1%, 2.2%) (1.4%, 3%) (1.5%, 3.2%) (1.7%, 3.6%)

Panel A: Autocorrelation of forecast errors

Y TG 0.98 0.98 0.97 0.97 0.97

(Y/H)TG 0.98 0.97 0.97 0.97 0.97

ρY 0.51 0.48 0.48 0.47 0.45

ρR
K

0.51 0.48 0.48 0.47 0.46

Panel B: Correlation between long-run output growth forecasts and HP-filtered data

Output 0.40 0.42 0.47 0.48 0.49

Consumption 0.37 0.39 0.44 0.45 0.47

Investment 0.41 0.43 0.47 0.48 0.49

Hours 0.42 0.43 0.47 0.48 0.49

Panel C: Correlation between long-run Y/H growth forecasts and HP-filtered data

Output 0.40 0.42 0.45 0.47 0.48

Consumption 0.37 0.39 0.43 0.44 0.46

Investment 0.41 0.42 0.47 0.47 0.48

Hours 0.41 0.43 0.45 0.47 0.47

Panel D: Business cycle statistics

Amplification

σY_dif 40% 40% 47% 49% 52%

σI/σY_dif 2.48% 2.48% 2.61% 2.64% 2.68%

σH/σY_dif 0.51% 0.75% 0.81% 0.83% 0.85%

Propagation 0.51 0.48 0.48 0.47 0.45

Note: Y TG, (Y/H)TG, ρR
K
, ρY stand for the autocorrelation of forecast errors in long-run

output growth, long-run output per hour growth, and one-period ahead forecast errors in

rental rates and output growth, respectively.
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Table A.2: Learning model with alternative labor supply elasticities: statistics

Autocorrelation of forecast errors Correlations

Y TG (Y/H)TG ρR
K

ρY Y C I H

Data 0.96 0.98 0.38 0.37 0.47 0.69 0.46 0.30

Baseline Learning 0.97 0.97 0.48 0.48 0.47 0.44 0.47 0.47

Learning: ε−1
H = 7 0.97 0.97 0.43 0.44 0.45 0.42 0.46 0.46

Learning: ε−1
H = 2 0.97 0.97 0.27 0.27 0.41 0.35 0.41 0.41

Business cycle statistics

σY σC/σY σI/σY σH/σY ∆C ∆Y ∆I

Data 1.51 0.55 2.88 0.92 0.27 0.30 0.35

Baseline RE 0.80 0.75 1.74 0.37 −0.00 −0.01 −0.01

Baseline Learning 1.51 0.47 2.61 0.81 0.24 0.48 0.37

RE: ε−1
H = 7 0.77 0.75 1.73 0.34 −0.00 −0.01 −0.01

Learning: ε−1
H = 7 1.34 0.48 2.59 0.76 0.16 0.44 0.31

RE:ε−1
H = 2 0.67 0.77 1.67 0.21 −0.00 −0.01 −0.01

Learning: ε−1
H = 2 0.87 0.53 2.52 0.49 −0.19 0.28 0.11

Note: The top right panel reports the correlation between long-run output growth forecasts

and cyclical activities. ∆C ,∆Y ,∆I are autocorrelations of consumption, output and investment

growth.
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Table A.3: Learning model with alternative moment matrices: statistics

Autocorrelation of forecast errors Correlations

Y TG (Y/H)TG ρR
K

ρY Y C I H

Data 0.96 0.98 0.38 0.37 0.47 0.69 0.46 0.30

Baseline Learning 0.97 0.97 0.48 0.48 0.47 0.44 0.47 0.47

Learning: Γ1 0.97 0.97 0.47 0.48 0.46 0.43 0.47 0.47

Learning: Γ2 0.97 0.97 0.46 0.46 0.46 0.43 0.46 0.46

Learning: Γ3 0.97 0.97 0.48 0.48 0.47 0.44 0.47 0.47

Learning: Γ4 0.97 0.97 0.43 0.43 0.43 0.40 0.43 0.43

Learning: Γ5 0.98 0.98 0.32 0.30 0.34 0.31 0.35 0.35

Note: The right panel reports the correlation between long-run output growth forecasts

and cyclical activities.

Table A.4: Business cycle statistics (alternative moment matrices)

σY σC/σY σI/σY σH/σY ∆C ∆Y ∆I

Data 1.51 0.55 2.88 0.92 0.27 0.30 0.35

Baseline RE 0.80 0.75 1.74 0.37 −0.00 −0.01 −0.01

Baseline Learning 1.51 0.47 2.61 0.81 0.24 0.48 0.37

Learning: Γ1 1.50 0.47 2.60 0.81 0.24 0.47 0.36

Learning: Γ2 1.47 0.48 2.59 0.80 0.23 0.46 0.34

Learning: Γ3 1.52 0.47 2.61 0.82 0.24 0.48 0.37

Learning: Γ4 1.38 0.50 2.52 0.77 0.21 0.42 0.29

Learning: Γ5 1.21 0.55 2.39 0.71 0.18 0.28 0.07
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Table A.5: Correlation based on HP-filtered data

Model

Data RE equilibrium Learning

Correlation

ρC,Y 0.78 1.00 0.97

(0.00) (0.01)

ρI,Y 0.90 1.00 0.99

(0.00) (0.00)

ρH,Y 0.85 1.00 0.98

(0.00) (0.00)

ρPr,Y 0.40 1.00 0.77

(0.00) (0.03)

ρPr,H -0.12 0.99 0.62

(0.00) (0.06)

Q1­82 Q1­87 Q1­92 Q1­97 Q1­02 Q1­07­10
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Figure A.1: US Real GDP growth (solid line), its 1-quarter ahead median forecast (dashed

line) and NBER recession dates (shaded area)
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Figure A.2: Impulse response to a 1% positive productivity shock under CG-RLS learning
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Figure A.3: Agents’Perceived Law of Motion for the Trend
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