Liquids Sensing for Industrial Applications
(Microwave Sensing Techniques)
Emerging Device Technology (EDT) Research Group

College of Engineering & Physical sciences
Dept. of Electronic & Electrical Engineering

Ali Mohammed (amm338@bham.ac.uk)
Supervisors: Dr Yi Wang & Prof M. J. Lancaster

Introduction

- Accurate measurement of material properties is required for a number of applications in Petroleum, food, medicine and pharmaceuticals industries.
- The fact that every material (liquids, gas or solids) have distinct properties called the dielectric constant or permittivity. It gives us the opportunity to measure and analyse various form of liquids by simply exposing them to some sort of electrical signal (known as Microwave signal).
- Microwave signals are signal over the frequency range of 300MHz to 300GHz (common example is the microwave oven operating at 2.4GHz).
- The main property monitored by microwave signals is the dielectric constant, thus precise determination of the permittivity is key to the design of microwave sensors and the measurement systems

Why microwave…? Because of

- Their flexibility due to wide frequency range
- Their ability to penetrate all materials except metals
- Their non-invasive nature (do not affect the material under measurement)
- They see a very good contrast between water and most other material…

My research aims to…

- Design sensors that are capable of accurate measurement of material property
- To use the sensors to investigate crude oil properties at desire frequencies

For this, we have proposed a microwave based sensor

- A modified design over the conventional method
- Aim at improving sensitivity
- By 3D printing technology

Our work

We design...

- Using Computer Simulation Technology
 - CST software

- Modified cavity sensor
- Conventional cavity sensor

- Modified cavity sensor with sample holder
- Modified cavity sensor without sample holder

It was then, made..

- By 3D printing using polymer and coated it with copper material

- Sensor with one end open sample holder
- Sensor with both end open sample holder

We tested it using standard sample

- Acetone, IPA, Deionised water & Ethanol
- Then, measure three samples of crude oil

Findings

Results

- Two Changes are measured
 - Frequency shift
 - Energy loss

- These two parameters are use in extracting the dielectric constant (frequency shift) and loss tangent (change in energy loss) using mathematical formula (which we developed based on our sensor geometry) other than the conventional perturbation theory.

\[
\text{Dielectric const.} = 12257.96 \left(\frac{\Delta f}{f_c} \right)^2 + 762.1 \frac{\Delta f}{f_c} + 1.05
\]

Conclusion

- The device has the capability of accurate measurement of liquid dielectric constant or complex permittivity
- The modified sensor has better sensitivity than conventional type operating at the same frequency

Future work

- Investigate crude oil properties through dielectric measurement
- Further develop novel sensor that can be utilised in same way

Reference

Acknowledgement

I wish to thank Petroleum Technology Development Fund (PTDF) Nigeria, for providing the scholarship towards this research work.