
Rising environmental concerns require the implementation of appropriate 
policies to manage environmental risk. One such risk arises from air 
pollution. As part of the process of air quality management it is important 
to understand how effective different policies are to determine whether 
a policy should be, for example, scrapped, changed, or rolled out across 
different sectors or regions. However, evaluating clean air policies is a 
challenge because of the complex physical and chemical processes in the 
atmosphere and other socioeconomic factors that may also be impacting 
pollution levels. This briefing document outlines a methodological approach 
that can be used to provide evidence of the success or otherwise of different 
clean air policies for different geographical areas and time periods. 
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Fig. 1 An example showing the deweathering technique.  
(top) Observed air pollutant concentrations; (bottom) 
Deweathered air pollutant concentrations. In this example, 
de-weathering helps to quantify the impact on air quality of 
the COVID-19 lockdown (as an intervention) in the UK.

Fig. 2 An example showing the synthetic control method.  
(top) Trends in per-capita cigarette sales: California vs. the rest 
of the United States; (bottom) Effect of the policy: California 
vs. Synthetic California. In this example, the synthetic control 
method helps to quantify the impact of cigarette policy in 
California on per-capita sales.

Synthetic Control Method (SCM)Machine Learning (ML)

• Short-term changes in air quality are dominated by 
meteorological variations so changes in emissions 
may be masked by variations in the weather. 

• The impact of policy interventions on air quality is 
difficult to isolate from other causes of air pollution, 
such as natural changes in emissions, atmospheric 
chemistry and socio-economic factors.

• Previous studies fail to fully account for the effects 
of weather and natural seasonal or year-by-year 
trends in air quality. 

• Working with environmental scientists, data 
scientists and economists we develop a novel 
approach to quantifying the impact of clean air 
policy interventions based on observational data.

• We use machine learning techniques to strip out the 
effects of weather (Fig. 1), followed by a synthetic 
control method to account for natural variability or 
trends in the data (Fig. 2).
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Deweathering techniques remove the impact of weather 
conditions from the observed pollutant concentrations 
(Grange and Carslaw, 2019; Shi et al., 2021).

The SCM provides a way to evaluate policy by creating 
a suitable comparison group for the treated unit that is 
directly exposed to the policy.

To evaluate the impact of the California tobacco control 
program in 1989, Abadie et al. (2010) proposed a SCM 
that uses a weighted average of a set of control groups 
(38 US states - unexposed to the policy) to construct a 
counterfactual trend (a synthetic California). 

The observed differences after the intervention can be 
regarded as the impact of the policy (the causal effect).
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Application to the Birmingham Clean 
Air Zone (CAZ)
STEP 1:
ML-based meteorological normalisation  
to “deweather”
• Collect surface-based meteorological observations, 

pollutant concentrations and time variables for over 
40 monitoring stations across a number of UK cities. 

• For each pollutant and for each station, build a 
random forest machine learning model to predict the 
pollutant concentrations (70% for training the model, 
30% for testing the model)

• Replace meteorological variables randomly within 
the study period for each time point. 

• Repeat the steps above (300 times for example) and 
average the predicted concentrations to generate a 
“deweathered” concentration for each hour (Grange 
et al., 2018; Shi et al., 2021).

  

STEP 2:
Augmented SCM (ASCM) for causal inference
• Assign air quality stations (15-20) from other UK cities 

to act as a control group (not exposed to the clean air 
zone or similar interventions during the study period), 
with similar socio-economic characteristics during 
the pre-intervention period (6 months) and post-
intervention period (6 months).

• Use ASCM (Ben-Michael et al., 2021) to mimic the 
synthetic outcome (“de-weathered” pollution levels) 
of the treatment unit (stations exposed to Birmingham 
CAZ) as if they were not exposed to the CAZ.

• Calculate the differences between the treatment unit 
and the synthetic control group. 

• The difference is the true (causal) effect of the policy 
intervention and will tell us whether the CAZ helped 
to reduce emissions in an area compared to different 
synthetically constructed control groups that were 
not subject to a CAZ type policy.
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Fig. 4 Weekly deweathered vs. synthetic deweathered NO2 
at an air quality monitoring site in Birmingham, showing the 
causal effects of Birmingham CAZ on NO2 concentrations.

Fig. 3 Daily observed vs. deweathered NO2 concentrations 
at an air quality monitoring site within Birmingham Clean Air 
Zone before and after the implementation of the policy.

3

For a tutorial on the method and to access 
the codes we used in our data analysis see
clean-air-research.org.uk/resources/ or email 
Professor Zongbo Shi (z.shi@bham.ac.uk)

http://clean-air-research.org.uk/resources/
mailto:z.shi%40bham.ac.uk?subject=Impacts%20of%20Clean%20Air%20Policies
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Previous Approaches for Air Policy Evaluation
• Air quality models have been widely used to predict the impact of a policy on air quality. They contain large 

uncertainties (which simulate the dynamics of the atmospheric pollutant concentrations based on simplified 
mathematical representation of physical and chemical processes, and emission inventories), compromising 
the robustness of the model predictions.

• Econometric models used to identify the causality of air policy impacts include the Difference-in-Difference 
(DID) method, Regression Discontinuity Design (RD or RDD) and the Synthetic Control Method (SCM).
• DID compares a control group (not subject to any policy intervention) and a treatment group (with the 

policy implemented) before and after the implementation but could be inaccurate when the two groups 
show no similar trends before the policy is implemented (the parallel pre-trend assumption).

• SCM generates the weighted average of the control group to construct a counterfactual series, which is 
more accurate.

Data-driven ML-ACSM offers an alternative approach to the commonly used air quality modelling.

Advantages of ML-ASCM over other data-driven techniques
ML-ASCM Approach Previous Approaches
• Capable of accurate evaluation of any air pollution 

control policy.
• Requires temporally/spatially resolved observations 

before and after the implementation of policies.
• Requires data from a number of control stations/

cities that are not subject to similar policies.

vs

Simple before-after comparison

• May bias the impact of the policy interventions 
as other explanatory factors (confounding 
factors), such as weather conditions, economic 
fluctuations, Covid lock-down/recovery, and other 
random events are not properly controlled for.

ML-based RF model Statistical Model

• More accurate predictions.
• Better at handling correlations between other 

explanatory variables (multicollinearity and 
interaction effects).

• Limited ability to control for multicollinearity  
and interaction effects between different 
explanatory variables.

ASCM DID and RD

• Does not require a parallel pre-trends assumption.
• Generates dynamic outcomes.
• Can be used for single treatment unit.
• Employs Ridge regression on the outcome to adjust 

the weight matrix from a simple SCM approach.
• Can be employed without predictors (only  

use outcomes).
• Can be extended to more general cases.

• The parallel pre-trend assumption is usually 
violated in practice.

• Only compares causal impact between the 
treatment group (more than one unit) and the 
control group.

SCM

• Selection for the control group in the real 
world that is able to pass the strict theoretical 
assumptions is difficult.

• Limited use in a few special cases.
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